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Fabrication, Mechanics, and
Reliability Analysis for Three-
Dimensional Printed Lattice
Designs
The use of three-dimensional (3D) printing for lattice structures has led to advances in
diverse applications benefitting from mechanically efficient designs. Three-dimensional
printed lattices are often used to carry loads, however, printing defects and inconsistencies
potentially hinder performance. Here, we investigate the design, fabrication, mechanics,
and reliability of lattices with repeating cubic unit cells using probabilistic analysis. Latti-
ces were designed with 500lm diameter beams and unit cell lengths from 0.8 mm to
1.6 mm. Designs were printed with stereolithography and had average beam diameters
from 509 lm to 622 lm, thereby demonstrating a deviation from design intentions.
Mechanical experiments were conducted and demonstrated an exponential increase in
yield stress for lattice relative density that facilitated probabilistic failure analysis. Sensi-
tivity analysis demonstrated lattice mechanics were most sensitive to fluctuations for beam
diameter (74%) and second to lattice yield stress (8%) for lattices with 1.6 mm unit cells,
while lattices with smaller 1.0 mm unit cells were most sensitive to yield stress (48%) and
second to beam diameter (43%). The methodological framework is generalizable to further
3D printed lattice systems, and findings provide new insights linking design, fabrication,
mechanics, and reliability for improved system design that is crucial for engineers to
consider as 3D printing becomes more widely adopted. [DOI: 10.1115/1.4051747]

1 Introduction

Three-dimensional (3D) printing enables the fabrication of
complex structures, such as mechanically efficient lattices for
diverse applications [1,2]. Three-dimensional printing processes
additively construct parts using a layer-by-layer build process that
introduces fabrication and performance inconsistencies [3–6].
Stereolithography printing, for instance, introduces errors due to
laser/platform movements and how liquid resin flows prior to cur-
ing each layer [7,8]. Fabrication inconsistencies can adversely
influence mechanics through nonuniform stress distributions and
irregular geometries that introduce uncertainties in system per-
formance [9–12]. Uncertainties can influence part failure and
necessitate approaches for determining probability of failure to
inform design and manufacturing decisions [13–15]. Therefore,
there is a need for probabilistic models that account for printing
process uncertainties that translate to improved understanding of
design parameter sensitivity for 3D printed structures.

One area of recent interest for stereolithography printed lattices
is their use as biocompatible tissue scaffolds, where scaffolds pro-
vide mechanical integrity while facilitating tissue growth
[5,16,17]. Recent efforts have begun relating fabrication uncer-
tainties for scaffolds to predict their mechanical responses con-
structed with selective laser melting [18]. These studies linked
uncertainties in lattice beams and structure to mechanics and used
a stochastic upscaling method to support a systematic validation
approach to reduce experimental costs. Their approach found
inconstancies in beam diameter and relative density affected
mechanical performance and demonstrated a generalizable uncer-
tainty framework for 3D printed structures. Here, we consider an
uncertainty framework integrated with a recent design, fabrica-
tion, and mechanical testing framework that successfully facili-
tated design decision-making for polyjet printed lattices [7,19].

The framework is used in this study to investigate lattice mechan-
ics as illustrated in Fig. 1.

In the Fig. 1 framework, design steps refer to how a lattice is
configured based on its design parameters such as beam diameters,
unit cell lengths, and topology to form lattices of beam-based unit
cells with repeating structure [20]. Topologies include varied distri-
butions of orthogonal and perpendicular beams that influence elas-
tic modulus and shear modulus [21,22]. Figure 1 lattice used in this
study is constructed from repeating relatively simple cubic unit
cells, thereby enabling focus in developing the framework on link-
ing uncertainties in lattice fabrication to mechanics, rather than
exploring complicated topologies. Probabilistic analysis requires
printing large sets of similar lattices, thereby limiting the number
of explorable design decisions. This consideration motivates com-
paring designs of varied unit cell lengths that enables lattice com-
parisons with varied relative densities, while parameters such as
beam diameter remains constant. Relative density is also consid-
ered as a key lattice design property, with denser lattices expected
to have higher mechanical stiffness and strength [23,24].

Fabrication requires considerations of the printing process,
material used, and validation of printing accuracy. Stereolithogra-
phy is selected here, since it is commonly used for printing lattices
and is relatively inexpensive for producing large quantities of
prints for reliability analysis [16]. Material choice is motivated by
a tissue scaffold case study to use biocompatible 3D printed latti-
ces [25], which suggests a methacrylic acid-based polymer will
facilitate printing and testing while enabling comparisons of
results with other printing processes [17]. Fabrication accuracy is
assessed through manual measurements with calipers, microscopy
measurements, and weighing to determine relative density to
quantify deviances in fabricated samples from intended designs.
Knowledge of fabrication accuracy informs redesign decisions
based on uncertainty in printing to ensure desired mechanical per-
formance is reached [26].

Mechanical assessment is necessary for evaluating lattice per-
formance, with a focus on mechanical compression testing to
determine properties including elastic modulus, yield strain, and
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ultimate stress commonly used for benchmarking [25]. Here, it is
possible to predict failures based on the Gibson–Ashby model
through conducting experiments on lattice variations throughout
the design decision space with considerations to relative density
[23,24]. It is necessary to conduct mechanical experiments on a
large number of lattices of the same design to determine how fab-
rication uncertainties influence modeling trends [27,28]. An
improved understanding of uncertainties promotes making
informed decisions when considering complicated interactions
among material selection, printing process, and lattice design that
all influence part performance [29,30].

The framework continues with analyzing the large set of data to
find trends based on reliability and probability analysis with sub-
sequent modeling of key trends. Uncertainties caused by the print-
ing process can lead to unexpected system failures; therefore,
quantifying uncertainties informs decisions to reduce the risk
[31]. Collecting large datasets for probabilistic analysis reduces
error due to epistemic uncertainty [32,33], with dataset size deter-
mined once data values reach convergence [34]. The collected
dataset is informed by empirical measurements describing how
printed lattice structures deviate from computer-aided design
models in terms of measurable dimensions [35,36]. These meas-
urements indicate printing precision using the t-distribution
method. The t-distribution method provides the confidence bound
of printing precision as an output with a certain percentage of con-
fidence used to determine a lower and upper limit. The limits are
useful as a tolerance for 3D printing [37,38].

The probabilistic analysis predicts the probability of failure or
reliability of a system based on uncertainties and gives a probabil-
ity of occurrence for events, such as failure, based on variable val-
ues. The first step of probabilistic analysis is to convert a
deterministic problem to a probabilistic problem [39–41]. For the
probabilistic analysis, there is a need to identify and define ran-
dom variables that have probabilistic values and relate to system
performance. The next step is to find the distribution of random
variables. Then, a response function (i.e., z-function) is used to
define limiting or target values of interest to designers, such as the
failure point [42]. The result is the estimation of the probability of
system behavior for a limiting or target value [43,44]. Addition-
ally, the probabilistic analysis enables identifying the sensitivity
of random variables and how they relate to design functioning and
success [45,46].

Advancing research with the described integrative framework
from Fig. 1 is necessary due to the need for research that leverages
the benefits of 3D printing through design based on recent manu-
facturing advances [47]. Recent works have demonstrated that
microscale defects and surface inconsistencies limit performance
and fabrication of mechanical lattices [9], which suggests a need
for reliability analyses to improve design outcomes. A recent
Monte Carlo simulation-based approach was recently imple-
mented to investigate how fabrication defects influence mechani-
cal behavior and reliability [28]. The approach was necessitated
because traditional modeling such as finite element meshes are
potentially too computationally expensive to model mechanics of
structures with fabrication defects to enable efficient design

decision-making. The research demonstrated varied success for
modeling accuracy based on lattice topological design that
informed future computationally efficient reliability analysis.

Another research study investigated optimization and reliability
based on the surface quality of fused filament fabricated parts and
used Weibull statistics to predict survival rates of parts for func-
tional applications [43]. Results from experiments for treating 3D
printed parts with different annealing temperatures demonstrated
percentage of errors greater than 5% that motivated subsequent
reliability analysis. Surface and mechanical properties were then
optimized. Local manufacturing defects have also been observed
in metal lattices that led to an automated analysis of microscope
images and finite element analysis to avoid time-consuming and
difficult experiments [12]. The research predicted the mechanical
influence of local manufacturing defects such as adhered powder
particles, partially attached globules, badly formed beams, and
severe notches. Failure for parts was predicted by von Mises
stresses that coincided with a localized zone of yielding. These
studies highlight recent research in the beginnings of reliability
analysis for 3D printed structures, with a continued need for inte-
grated approaches that further relate fabrication to design in an
efficient manner.

The goal of this paper is to experimentally investigate uncer-
tainty when 3D printing lattices and analyze their failure chance
using probabilistic analysis with an integrated approach for
design, fabrication, mechanics, and analysis. Design is investi-
gated by generating lattices with cubic unit cells of varied unit
cell sizes fabricated with stereolithography printing. Fabrication
accuracy is assessed by measuring lattice dimensions and micro-
structures and observing distributions of measurements that devi-
ate from intended design. Mechanical compression testing is used
to evaluate lattice mechanics that is conducted in two batches.
The first batch tests lattices of varied relative density, while a sec-
ond batch conducts tests with a large number of replications for
lattices of two different relative densities to facilitate probabilistic
analysis. The initial batch of experiments is necessary to derive
equations that describe when a lattice fails based on its yield stress
and design parameters. The first-order reliability method is used
to compute the probability of failure. Sensitivity analysis is then
performed to find which random variable has the greatest influ-
ence on the probability of failure. The framework is generalizable
to further 3D printing processes and structures and marks signifi-
cant advances in characterizing 3D printing and mechanics in
relation to probabilistic uncertainty frameworks. The outcomes
are helpful to designers for estimating the reliability of a system
for specific design applications and informing design decisions for
improved performance in 3D printed parts for diverse engineering
applications.

2 Methods

2.1 Lattice Design. Lattices were designed by symmetrically
patterning 216 identical cubic unit cell designs constructed from
beam elements (Fig. 2). Cubic unit cells were generated in ABAQUS

Fig. 1 Engineering process for 3D printed lattice study with design, fabrication, mechanics,
and analysis steps
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software using PYTHON code that automates beam placements for
beam diameter Ø and unit cell length l, with unit cells patterned to
form a lattice with length L (Fig. 2) [21].

Samples were designed with 216 unit cells to facilitate eco-
nomic testing, while retaining a large enough number to reduce
boundary condition effects when total unit cell count is lower
[16]. For all lattices, beam diameter was 500 lm, while unit cell
length varied from 0.8 mm to 1.6 mm in 0.2 mm intervals to pro-
duce five different designs. Relative density is defined as the ratio
of solid lattice volume to nominal lattice volume. Lattices had
designed relative densities from 0.23 to 0.68.

2.2 Fabrication Process. Designed lattices were fabricated
with an Envision One stereolithography printer using E-Shell 600
biocompatible methacrylic acid-based polymer [16]. The printer
builds structures layer-by-layer by projecting ultraviolet light on
liquid resin for each layer as the structure adheres to a build plat-
form. Support material was used for initial layers of printing
before printing the lattice. Lattices were removed from the build
platform with a metal spatula and rinsed with isopropyl alcohol.
The support material was removed with a blade. Lattices were
postcured with ultraviolet light in a PCA 2000 chamber.

Two sets of lattices were printed to facilitate experiments for
determining the relationship between lattice mechanics and rela-
tive density followed reliability analysis. The first set consisted of
five prints for each of the lattice designs described in Sec. 2.1 with
beam diameters of 0.5 mm and unit cell lengths of 0.8 mm,
1.0 mm, 1.2 mm, 1.4 mm, and 1.6 mm. The second batch of prints
consisted of 30 prints each of the 1.0 mm unit cell length and
1.6 mm unit cell length designs referred to as small lattice and
large lattice designs, respectively.

2.3 Printing Accuracy. All samples were printed and tracked
with a unique identifying number to pair samples to fabrication
accuracy and mechanical testing measurements for reliability
analysis. Sample length and height were measured using calipers.
Lattice length was measured based on the planar dimensions par-
allel to the build direction, while lattice height was the planar
dimension perpendicular to the build direction, as indicated in

Fig. 3. Build direction was based on the sequential placement of
lattice layers. Relative density was calculated by comparing the
measured density of the sample to base material, which was tested
in previous studies to have a density of 1.19 kg/cm3 [16]. The
beam diameter and unit cell length for fabricated samples were
measured from microscopy images collected with an Olympus
DSX510 digital microscope (Fig. 3).

Beam diameters were collected from two samples for each
design. Beam diameter was measured in three locations for 36
beams (18 vertical and 18 horizontal) by measuring the beam’s
width in the middle of the beam and toward each end as indicated
in Fig. 3 for a total of 216 measurements per design. Unit cell
length was measured from three samples for each design. Unit
cell length was measured in three locations for 12 unit cells on
each sample unit cell by measuring the length from the edge of
one beam to the edge of another adjacent beam as indicated in
Fig. 3 for a total of 108 measurements per design, with equal num-
bers of measurements in vertical/horizontal orientations for unit
cells.

Printing accuracy was determined using the t-distribution
method with selected confidence levels of 5% or 1% to calculate
the upper and lower bounds. The confidence bound for the upper
and lower limit for the 3D printer was calculated using the t-
distribution method at a 95% confidence level with

Limit ¼ SDffiffiffiffiffiffiffi
NS
p � Qa

2
(1)

where SD is the standard deviation, and NS is the number of sam-
ples. The term Qa=2 is the values for standard normal distribution
evaluated at the probability levels of 1� a/2 and a/2 and for 95%
confidence interval Qa=2 ¼ 1: 96 with upper confidence limit and
lower confidence limits calculated as the mean plus or minus the
limit variables from Eq. (1).

2.4 Mechanical Testing. An Instron 5966 Mechanical uni-
versal testing machine was used for compression testing of printed
lattice samples. Testing measured the load for displacement-
controlled deformation. All samples were tested perpendicular to
the build direction (Fig. 3). Rotating of samples before testing
avoided the presence of irregular or rough surfaces from support
material removal. Elastic modulus, yield stress, and ultimate stress
were determined using PYTHON scripting to analyze measurements

Fig. 2 Lattice structure with cubic unit cells and indicated
design parameters for beam diameter Ø, unit cell length l, and
lattice length L

Fig. 3 Example measurements overlaid for beam diameter Ø
and unit cell length l for lattice microscopy with test and build
directions indicated; 2 mm scale bar
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[25]. Quasi-static conditions were used for loading rates of 0.1
strain per minute.

2.5 Reliability Analysis. Uncertainties in part performance
can arise due to process, material, and geometry [34,48], with the
analysis assuming the lattice must sustain a given load prior to
failing due to yielding. The first step for uncertainty quantification
is to find a governing equation that quantifies the uncertainty that
arises due to the process, material, and properties, such as the
Gibson–Ashby relationship for how mechanical properties of a
lattice scale with relative density [23,24]. The constants in the
Gibson–Ashby equation are derived empirically according to

P�

P
¼ K

q�

q

� �n

(2)

where P� are lattice mechanical properties (e.g., elastic modulus
or yield stress), P are mechanical properties of the solid material
used to construct the lattice, q� is the lattice density, and q is the
density of the solid material used to construct the lattice. K and n
are empirically derived constants determined by fitting Eq. (2)
based on the relationship of measured relative yield stress to rela-
tive density.

To facilitate reliability analysis, it is necessary to include rela-
tive density related to design parameters for the number of unit
cells N, beam diameter Ø, and the beam unit cell length l by

q�

qs
¼ S

NØ

l

� �
(3)

and combined with Eq. (2) that is modified to predict relative
yield stress

r�y ¼ ry K
q�

qs

� �n
" #

(4)

where r�y is the lattice yield stress of structure, and ry is yield
stress of solid material used to construct the lattice [49]. Equations
(3) and (4) are then combined to form

r�y ¼ ry� K S
NØ

l

� �� �n
( )

(5)

that describes the reliability analysis to relate failure criteria of
yield stress to design parameters using a z-function (i.e., perform-
ance function) given by

z ¼ r�y � r� (6)

that evaluates based on the lattice measured yield stress r�y (random
variable) compared to the lattice’s calculated yield stress value r�

(random variable). The lattice is assumed to fail when the z-
function attains a value of zero or less (i.e., z� 0), meaning the cal-
culated yield stress (random variable) of a lattice is higher than the
measured yield stress (random variable) from Eq. (5). According to
Eq. (6), the probability of z� 0 is the probability of failure.

Using the data collected, the modeling of the uncertainties in
beam diameter, unit cell length, solid yield stress, and lattice yield
stress was achieved following three steps. First, the sufficiency of
the sample size for estimating the population mean, standard devi-
ation, and distribution was established using the mean-square cri-
terion, which is based on the convergence of the standard
deviation [34,50]. Second, by using the chi-squared criterion the
collected data, the better fitting distributions were selected for
each random variable. Third, using the physics informed data, the
best distribution for each random variable was established [51].

After finding the distribution of random variables, the next step
is to use random variables in probabilistic analysis. In this paper,

the first-order reliability method is used for reliability and sensi-
tivity analysis [8]. The first-order reliability analysis is used to
find the probability of failure, reliability of system, and sensitivity
of random variables in the system.

The first-order reliability solution is based on the first-order
polynomial of the z-function after linearization in the most proba-
ble point in the u-space; the first-order polynomial z(u) is given by
[52,53]

z uð Þ ¼ a0 þ
Xn

i¼1

ai ui � u�i
� �

(7)

where

u�i ¼ bai;

b ¼ MeanðZÞ=Standard deviationðZÞ; and a ¼ � rz=jrzjð Þ:

The probability of failure pf ¼ Ø �bð Þ is computed as

pf ¼ Ø �bð Þ (8)

The values of b can range from negative to positive values. If b
attains negative value, the origin of the z-function is in failure
region. The reliability of the system is calculated using the rela-
tion: Reliability¼ 1� pf .

2.6 Sensitivity Levels. Sensitivity analysis is used to set val-
ues for the z-function to calculate the sensitivity of random varia-
bles at different levels. Levels are the value at a particular
instance in response; in this study, the probability and sensitivity
are calculated at ten levels. Sensitivity levels are partial deriva-
tives of the response with respect to the mean and standard devia-
tion value of random variables. The probabilistic sensitivity
factors that reflect the change in probability relative to the change
in the mean and standard deviation are

2l ¼
@p

@l
SD

p
(9)

2SD ¼
@p

@ðSDÞ
SD

p
(10)

where 2l and 2r are the value changes with respect to mean and
standard deviation, l is the mean, and SD is standard deviation
[54].

3 Results

3.1 Fabrication Accuracy. Manufacturability of designs was
investigated by printing five samples with varied unit cell lengths
and comparing measurements for fabricated designs to their
intended designs. Figure 4 demonstrates prints of each design that
were all configured with 500 lm beam diameters and differing
unit cell lengths of 0.8 mm, 1.0 mm, 1.2 mm, 1.4 mm, and 1.6 mm.

Figure 4 samples show that qualitatively the prints were fabri-
cated as expected and generally scaled correctly in relation to one
another with a regular patterning of pores. Beams also appeared to
have consistent printing across designs. Sample faces were
imaged in Fig. 5 using microscopy to determine if pores continued
unobstructed throughout the structure and to measure beam diam-
eters and unit cell lengths.

Figure 5 microscopy results demonstrate pores are open
throughout the entire structure and with no major obstructions.
Pore size relative to beam diameter is scaled accordingly, with
pores increasing in size as unit cell length increases. There are
some fabrication defects, for instance, in Fig. 5(a), there is a
rounding of the structure at the bottom of the image where corners
were not printed accurately, attributed to support material printing

011107-4 / Vol. 8, MARCH 2022 Transactions of the ASME



and removal. In Figs. 5(b) and 5(d) artifacts, there is extra mate-
rial partially filling some pores. Beam diameters slightly fluctuate
throughout the structure, with some beams warping. Some beams
appear wider on one half of their length than the other, which is
observed in Figs. 5(c) and 5(d). These fabrication defects justify
the need for taking multiple measurements along a beam and unit
cell at regular intervals and averaging the result to obtain a more
consistent measurement, as described in Sec. 2.3. Aggregations of
measurements are presented in Table 1 for all lattice dimensions

measured with calipers, microscopy measurements for beam
diameter and unit cell length, and relative density determined by
weight.

Table 1 results demonstrate that as the unit cell length
increases, the relative density of the structure decreases. The
measured relative density ranges from 0.08 higher to 0.22 higher
than designed, which suggests more material is added during the
fabrication process than intended. The measured lattice length and
lattice height are near their designed values of 5.25 mm, 6.5 mm,
7.75 mm, 9 mm, and 10.25 mm. The beam diameter for the highest
unit cell length of the 1.6 mm unit cell design was 122 lm larger
than designed, whereas other structures had less than 65 lm differ-
ences. These larger beam diameters are factors for increasing the
relative density of the structure and demonstrate the uncertainty in
printing based on their standard deviation that is also largest for
the largest lattice design.

Figure 6 depicts the probability density functions (PDFs) of
random variables for lattices with 0.8 mm, 1.0 mm, 1.2 mm,

Fig. 4 Fabricated lattices with indicated unit cell length l; 4 mm scale bar

Fig. 5 Fabricated lattice microscopy with unit cell length l of
(a) 0.8 mm, (b) 1.0 mm, (c) 1.4 mm, and (d) 1.6 mm; each scale
bar is approximately 2 mm

Table 1 Design parameter values and mean fabrication measurements for lattices of varied unit cell lengths with standard
deviation

Designed Measured

Unit cell length Relative density Lattice length Lattice height Beam diameter Unit cell length Relative density
(mm) — (mm) (mm) (lm) (mm) —

0.8 0.68 5.41 6 0.04 5.26 6 0.07 509 6 34 0.7 6 0.04 0.82 6 0.04
1.0 0.5 6.55 6 0.03 6.48 6 0.08 525 6 35 1.02 6 0.03 0.66 6 0.04
1.2 0.38 7.76 6 0.06 7.73 6 0.22 509 6 41 1.2 6 0.03 0.49 6 0.02
1.4 0.29 8.83 6 0.10 8.86 6 0.15 561 6 39 1.38 6 0.03 0.41 6 0.02
1.6 0.23 10.19 6 0.17 10.09 6 0.06 622 6 92 1.68 6 0.12 0.31 6 0.02

Fig. 6 Probability density function of beam diameter measure-
ments for lattices designed with varied unit cell lengths
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1.4 mm, and 1.6 mm unit cell lengths when investigating the beam
diameter measurement designed at a constant 500 lm for all latti-
ces. Since the PDFs are lognormal, they are each fully defined by
their respective means and standard deviations. To extract the
probability from the PDFs, the area under the curve is calculated
for the given values of interest for the random variable. Often to
avoid calculating areas, the cumulative distribution function
(CDF) is used to directly determine the probability for the given
values of interest for a random variable.

All beam diameter random variables follow the lognormal dis-
tribution. With increases in unit cell length, the standard deviation
of beam diameter also increases. The curve for this largest design
is flatter compare to others that demonstrates the 1.6 mm diameter
lattice has the highest standard deviation. Figure 7 demonstrates
the PDF of unit cell length for lattices designed with 0.8 mm,
1.0 mm, 1.2 mm, 1.4 mm, and 1.6 mm unit cell lengths.

All unit cell length random variables follow the lognormal dis-
tribution. The 1.6 mm unit cell length showed the highest devia-
tion around 8%. These results demonstrate consistency in unit cell
length measurements that are at most about 0.1 mm larger than
designed. Overall, Figs. 6 and 7 results highlight the uncertainty
in fabricated beam diameter and unit cell length dimensions in
comparison to their intended design parameter values.

3.2 Mechanics. Table 2 presents measurements of lattice
mechanical properties that include yield stress, ultimate stress,
and elastic modulus in relation to designed lattice parameters for
samples investigated in Sec. 3.1. These measurements are neces-
sary for later predicting when fabricated parts may fail.

Table 2 demonstrates the measured lattice mechanical proper-
ties have increases in elastic modulus, yield stress, and ultimate
stress with relative density. The elastic modulus and yield stress
of the 0.8 mm unit cell lattice are roughly five times greater than
the 1.6 mm unit cell lattice, while the ultimate stress is over 20
times greater. The elastic modulus was plotted for each tested
sample in Fig. 8 as a function of measured relative density.

Figure 8 results demonstrate a linear increase in elastic modulus
with relative density of E¼ 1100 q�=qsð Þ � 253:24½ � with a coeffi-
cient of regression of 0.96. These results demonstrate some spread
in the data, particularly at higher relative densities there is a
greater standard deviation in measurements. These results demon-
strate the expected trend of mechanical properties of parts increas-
ing with relative density that facilitates solving empirical
constants described in Sec. 2.5 to conduct failure analysis. From
Eq. (4), the values of K and n are both unknown and necessary to
solve the z-function. To calculate the K and n values, Fig. 9 is
plotted as the relative yield stress values against relative density
values. In the plot, five data points are collected for each designed
unit cell length (note for the 1.6 mm unit cell length sample, some
points overlap).

Figure 9 demonstrates an increase in lattice relative yield stress
according to a power law based on Eq. (6). The power law pro-
vides a correlation coefficient of 0.95, with the value of K as 0.58,
and the value of n as 2.2. The equation for the curve is

r�

ry
¼ 0:58

q�

qs

� �2:2
" #

(11)

and is in the correct form to facilitate reliability analysis. The final
set of mechanical data for analysis to calculate the z-function is
the relation of geometric lattice variables to mechanical behavior.
Figure 10 is plotted based on assumptions from Eq. (4) to

Fig. 7 Probability density function of unit cell length measure-
ments for lattices designed with varied unit cell lengths

Table 2 Measured mechanical properties for designed lattices
with standard deviation

Designed Measured

Unit cell
length

Relative
density

Elastic
modulus

Yield
stress

Ultimate
stress

(mm) — (MPa) (MPa) (MPa)

0.8 0.68 692 6 74.6 24.2 6 3.28 60.5 6 18.18
1.0 0.5 331 6 24.7 11.9 6 2.06 14.9 6 2.03
1.2 0.38 233 6 26 7.4 6 1.46 7.8 6 1.53
1.4 0.29 163 6 25.04 4.7 6 0.74 4.8 6 0.79
1.6 0.23 112 6 22.8 2.5 6 0.34 2.6 6 0.47

Fig. 8 Measured elastic modulus for lattices based on meas-
ured relative density

Fig. 9 Measured relative yield stress based on measured lat-
tice relative density

011107-6 / Vol. 8, MARCH 2022 Transactions of the ASME



determine a relation of relative density and lattice geometric vari-
ables of (ØN/l).

Figure 10 demonstrates a positive correlation between meas-
ured relative density and measured geometric variables, which is
fit linearly with a correlation coefficient of 0.9. The resulting
equation is

q�

qs
¼ 2� 10�5 NØ

l

� �
þ 0:22 (12)

that provides the final empirically derived values for reliability
analysis using Eqs. (9) and (10) to solve the z-function, which
marks the conclusion of experiments with the first batch of lattice
designs in Secs. 3.1 and 3.2 that provide a baseline understanding
of how design and fabrication influence mechanics.

3.3 Reliability. Reliability analysis is conducted using fabri-
cation measurements from Sec. 3.1, empirical modeling equations
from Sec. 3.2, and here in Sec. 3.3 mechanical testing experiments
from 30 new samples of the 1.0 mm lattices referred to as small
lattice designs and 30 new samples of the 1.6 mm lattices referred
to as large lattice designs. Once mechanical testing is conducted,
the mechanical data for each specific lattice for yield stress are

used to conduct reliability analysis using trends from Sec. 3.1
describing distributions of the remaining random variables.
Figure 11 demonstrates the stress versus strain diagrams for each
individual sample of the large and small lattice designs tested.

In Fig. 11, the large lattices reach a lower stress than small latti-
ces because their relative densities are lower. The mean elastic
modulus for large lattices was 106.8 MPa with a 14.3 MPa stand-
ard deviation, while the mean elastic modulus for small lattices’
structure was 356.6 MPa with a 49.1 MPa standard deviation.
Both of these results are within about 10% of the mean values
measured for the first set of lattice testing experiments from
Table 3, which demonstrates consistency and small fluctuations
representing uncertainties in print quality between batches. Table 3
presents length (measured), height (measured), yield stress (calcu-
lated), ultimate stress (calculated), and relative density (calcu-
lated) values of the large and small lattice designs.

In Table 3, the measured relative density for the large lattices
was between 0.29 and 0.35, while measurements for the small lat-
tices were between 0.62 and 0.74. The data presented in Table 3
are validated with initial experimental data that are presented in
Table 2. Mean yield stress of large and small lattices in Table 3
was 2.5 MPa and 11.9 MPa, respectively. Comparisons of yield
stress from Tables 2 and 3 demonstrate both experiments showed
similar results with little deviation for factors relating to failure
for the reliability analysis.

To verify whether the number of samples were sufficient for the
presented reliability and sensitivity analysis after mechanical test-
ing, a convergence test was conducted using physics informed dis-
tributions of random variables. Figure 12 demonstrates the
convergence estimation for the standard deviation of yield stress
for large and small lattices, which is used to ensure an adequate
sample size was collected for analysis. To remove biases from the
data, the convergence was tested for three different data arrange-
ments [34]. Three different data arrangements were achieved by
randomly sorting the sample data. Figure 12 demonstrates the
convergence of data toward the standard deviation of all the sam-
ples. From the two plots, the threshold at which the sample esti-
mator stabilized is about 25–27 samples for the standard
deviation.

The convergence results of Fig. 12 suggest that the 30 samples
are appropriate for continuing with uncertainty considerations of
random variables necessary for reliability analysis. Random varia-
bles are presented in Table 4 that provides a relationship between

Fig. 10 Measured relative density for dimensionless design
parameter relationship (NØ /l)

Fig. 11 Stress–strain plots for (a) large lattices with 1.6 mm unit cell length and (b) small lat-
tices with 1.0 mm unit cell length

Table 3 Measured dimensions and properties for large lattices of 1.6 mm unit cell length and small lattices of 1.0 mm unit cell
length with standard deviation

Length (mm) Height (mm) Yield stress (MPa) Ultimate stress (MPa) Elastic modulus (MPa) Relative density

Large lattice 10.20 6 0.04 10.10 6 0.05 2.53 6 0.58 2.8 6 0.43 106.8 6 14.3 0.32 6 0.02
Small lattice 6.55 6 0.04 6.49 6 0.05 11.26 6 1.45 16.3 6 3.27 356.6 6 49.1 0.68 6 0.05
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the uncertainty in the design of the lattice due to 3D printing fabri-
cation and its failure criteria using the z-function, which is deter-
mined from data distributions in Sec. 2.1 from Figs. 6 and 7 for
fabrication uncertainty in addition to Fig. 11 data for mechanics
uncertainty.

The physics informed data for beam diameter and unit cell
length that, for example, cannot be negative, were described with
a lognormal distribution informed from the literature [55–57].
Properties for the solid material yield stress were informed from
past studies for its values of 1620 MPa for elastic modulus,
65.7 MPa for yield stress, and 1.19 g/cm3 for density [16]. The
additional variables in the mathematical model from Sec. 2.5 for
reliability analysis include empirically derived constants n, S, and
K in addition to the number of unit cells N that were all considered
as deterministic variables with a single value without distribution
and determined from empirical data in Sec. 3.2.

The accuracies of the lattices from the 3D printer were deter-
mined using a t-distribution. Table 5 depicts the results of mini-
mum and maximum values with a 95% confidence bound.

Table 5 demonstrates the design parameters such as beam diam-
eter, unit cell length, lattice length, and lattice height with their
mean, lower, and upper limit value with 95% confidence. The
measured data were close to their design value. For instance, the
unit cell length designed value for the large lattice was 1.6 mm
with a mean of 1.664 mm. For the small lattice, the designed value
was 1.0 mm, with measured mean of printed value being

1.015 mm. Figure 13 demonstrates the percentage deviation in the
printing for design parameters of the large and small lattices.

From Fig. 13, 1% deviation signifies that only 1% of the struc-
tures printed in the facility will have the dimension outside the
confidence bound. A higher standard deviation in printing indi-
cates a higher deviation in printing. For instance, the standard
deviation in beam diameter for large lattices is the highest among
lattices, and it also has the highest deviance. Therefore, the devia-
tion in the printing of both beam diameter and unit cell length
increases with a decrease in relative density. These results demon-
strate that although printing is consistent, there are still factors
that could influence mechanical reliability and motivate further
investigation.

The probability of failure was calculated using the first-order
reliability method. The CDF was plotted (Fig. 14) for several
probability levels of the z-function for the large and small lattice
structures.

Recalling Eq. (6), the results demonstrate that the probability of
z � 0 yielded the probability of failure for a large lattice structure

Table 4 Random variables

Random variable Symbol Distribution

Beam diameter Ø Lognormal
Unit cell length l Lognormal
Solid yield stress ry Weibull
Lattice yield stress r�y Weibull

Table 5 The 95% confidence bounds for design parameters for large lattices with 1.6 mm unit cell length and small lattices with
1.0 mm unit cell length

Large lattice Small lattice

Design parameters Lower limit Lower limit Lower limit Lower limit Mean Upper limit

Beam diameter (lm) 606 621 635 521 525 530
Unit cell length (lm) 1664 1688 1711 1015 1022 1029
Lattice length (mm) 10.14 10.2 10.25 6.54 6.55 6.56
Lattice height (mm) 10.08 10.1 10.12 6.46 6.49 6.51

Fig. 12 Convergence of the standard deviation using the mean-square criterion for (a) large lattices and
(b) small lattices

Fig. 13 Deviation in printing percentage based on design
parameters for (a) large lattices with 1.6 mm unit cell length and
(b) small lattices with 1.0 mm unit cell length
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of 68.2% and for a small lattice structure of 36.1%. This means
that the reliability of large lattices is 31.8% and small lattices is
63.9%. Both CDFs (i.e., probability of event z� 0) exhibited simi-
lar curves (i.e., the s-shape) but with different reliability values
for a given z-value. With an increase in unit cell length, the rela-
tive density reduces which makes the structure vulnerable. Hence,
the reliability of the large lattice is less when comparing to the
reliability of the small lattice. For a designer, this insight will hint
to reducing the standard deviation of data when designing or man-
ufacturing the larger structure.

Figure 15 demonstrates the sensitivity levels of the four random
variables at the response level z¼ 0 MPa. The sensitivity levels
demonstrate how each random variable affects the system reliabil-
ity. A negative sensitivity level means that increasing the corre-
sponding statistical descriptor will result an increase in reliability.
For example, increasing the standard deviation of the large lattice
will increase the reliability. On the other hand, a positive sensitiv-
ity level means that increase the corresponding statistical descrip-
tor will decrease the reliability.

Overall, the random variables of large lattices are more sensi-
tive than those of the small lattices. Further, the diameters of the
lattices are more sensitive than the lengths. For the length, the sen-
sitivity index with respect to the standard deviation is about 25%
of the index with respect to the mean. Thus, one may more easily
impact a change probability by changing the mean value of the
random variable. On the other hand, for the diameter, the sensitiv-
ity index with respect to the standard deviation is about 75% of
the index with respect to the mean.

The random variables of the small lattices are more sensitive
than those of the large lattices when focusing on yield stress.
Here, the lattice structure yield stress is more sensitive than the
solid structure yield stress. Figure 16 shows the percentage sensi-
tivity of the importance of each random variable at z� 0 MPa for
large and small lattices.

The results demonstrate that in the large lattice beam diameter
is more dominant, and in small lattices the yield stress was a more
dominant random variable compared to others. The probabilistic
importance factor of lattice yield stress for small lattices is 48%
and for large lattices is 8%, and the probabilistic importance fac-
tor for beam diameter increases from 43% to 74% from small to
large lattices, which suggest at higher unit cell lengths, the proba-
bilistic importance factor changes drastically. Hence, one should
tightly control the standard deviation of beam diameter while
designing the system for higher unit cell lengths. With increases
in size of unit cell length, the probabilistic importance factor of
beam diameter increases by 1.7 times, while the probabilistic
importance factor of yield stress decreases by 1.8 times. For the
large lattice, the sensitivity of beam diameter is very large relative
to all other variables, and in the small lattice the sensitivity of
yield stress is nearly the same as beam diameter.

These results suggest that the framework is a useful tool for
designing lattices that allows tweaking a variable to attain the
desired output. While designing lattices at higher relative density,
tweaking material properties will significantly affect the probabil-
ity of failure, and at lower relative density, tweaking geometric
quantities will significantly affect the probability of failure. For
example, if the reliability of a lattice needs an increase, it is
achievable by increasing beam diameter as it is more sensitive
toward failure and increasing beam diameter increases reliability.
The results therefore provide valuable insights for informing
design decisions for improving system performance when consid-
ering the uncertainties introduced by 3D printing processes.

4 Discussion

This research investigates 3D printed lattice design, fabrication,
and mechanics linked to reliability analyses in an integrated
framework demonstrated with lattice structures. The methodology
is generalizable for investigating further designs of 3D printed lat-
tices, where steps consist of parameterizing the design,
measuring the statistical distribution of parameter values for fabri-
cated samples, and linking those findings to mechanical perform-
ance trends. Lattices of varied design configurations were
fabricated to facilitate an initial experiment to determine mechani-
cal trends and a second experiment to conduct reliability and sen-
sitivity analysis. Overall, the study demonstrates that the need for
designers to consider variations in printed part performance to
identify key variables designers may manipulate to improve sys-
tem functioning.

Fig. 14 Cumulative probability density for large lattices with
1.6 mm unit cell length and small lattices with 1.0 mm unit cell
length

Fig. 15 Sensitivity levels of random variables at z 5 0 MPa for
large lattices with 1.6 mm unit cell length and small lattices with
1.0 mm unit cell length

Fig. 16 Probabilistic importance factor by percentage at
z 5 0 MPa for (a) large lattices with 1.6 mm unit cell length and
(b) small lattices with 1.0 mm unit cell length

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,
Part B: Mechanical Engineering

MARCH 2022, Vol. 8 / 011107-9



Fabrication of structures demonstrated qualitatively that the
printer can manufacture pores and structures at the desired dimen-
sions (Fig. 4), which is an improvement over polyjet processes
with similar biocompatible materials that are not able to fabricate
lattices with cubic unit cells reliably at these scales [9]. Inconsis-
tencies in lattice printing are attributed to beam diameters being
generally larger than intended, with larger beam diameters as unit
cell length increased, even though beam diameters for all struc-
tures were supposed to remain a constant 500 lm. The trend was
demonstrated in Table 1 by the 0.8 mm unit cell length having an
average beam diameter of 510 lm, while the 1.6 mm unit cell
length lattice had an average beam diameter of 622 lm. These dif-
ferences in fabrication from design to measurement occur due to
the stereolithography processes operating with a light projection
that cures liquid resin via photopolymerization, therefore leading
to less precise dimensions at lower scales closer to the limits of
the printer capabilities. Further sources of error may occur due to
anisotropy in the structure that alters dimensions based on the
layer-by-layer build process and factors such as vibrations and
machine movement. Improvements in printing may occur through
refining machine calibration or altering process control variables
such as curing time per layer and energy density of the light.

Lattice mechanics were investigated in relation to their relative
density and design parameters of unit cell length and beam diame-
ter. The Gibson–Ashby model was used to predict the mechanical
response of lattices that describes how lattice yield stress adheres
to a power law in relation to relative density and was determined
from Fig. 9 [23,24]. The correlation coefficient was 0.95 for the
data, thus showing a strong agreement between experiment and
theory across a broad range of relative densities from approxi-
mately 0.2 to 0.8 in predicting yield stresses. The elastic moduli
of the structures followed a linear relationship in Fig. 8 that is also
consistent with predictive models using finite element simulation
[21]. In Fig. 10, design parameters were related to lattice relative
density with the number of unit cells, measured beam diameter,
and measured unit cell length values used to plot the data. Future
studies could investigate altering the number of unit cells to deter-
mine the effect on density and mechanical properties, which is
important as lattices are resized for specific engineering applica-
tions by designers.

The integrated framework provides opportunities to aid engi-
neers and designers through insights gained from the probabilistic
analysis. The sensitivity analysis enables designers to identify the
most sensitive random variables in the system and adjust those
variables to reach the desired reliability. Further adjustments are
possible by changing the mean value or the standard deviation of
a given random variable by altering the design approach or manu-
facturing process. The results from Fig. 16 suggest that in small
lattices yield stress is more dominant; therefore, suggesting that
the designer has the ability to change the materials to improve
reliability without altering geometric variables to improve yield
stress. In larger lattices, the beam diameter is more sensitive.
These results suggest that designing lattices with larger unit cell
lengths by simply fine-tuning the beam diameter influences the
reliability of the system, and a desired reliability is achievable
through geometric tuning. Tuning the beam diameter is achievable
by altering the standard deviation of mean values through improv-
ing the print process, since the sensitivity levels for these statisti-
cal descriptors were not too far apart (standard deviation level was
75% of the level for the mean). In reality, such design decisions
are not always straightforward to reach desired outcomes, since
material properties and geometry are coupled and inter-related.
Often, changing one variable also influences another variable;
however, careful manipulation by skilled engineers will result in
improved system performance as their significance toward reli-
ability is weighted differently.

Overall, the paper demonstrated a framework for design, fabri-
cation, and mechanics of lattices integrated with reliability analy-
sis to inform engineers of the uncertainty for influences of 3D
printing processes on mechanical part performance. These

findings are particularly timely with advances in additive manu-
facturing technologies and the wide-ranging engineering applica-
tions that could benefit from consistent mechanically efficient
designs. Some limitations include the restriction on the number of
design variations investigated because each design requires fabri-
cation with a large number of replicates for testing to facilitate
probabilistic analysis. There are also confounding variables that
could introduce errors such as vibrations during printing, tempera-
ture conditions, and human factors in support material removal
that are difficult to control. It is possible that design automation
methods would allow for better bulk measurements of lattice
design parameters and pores to improve the speed of research in
future studies. Future work could further explore design parame-
ters and interactions for more complex cases such as topology
alterations in designs. Overall, these findings provide insights for
engineers to fully use 3D printing technology for mechanical
design that will aid in improving system design and performance
for mechanical systems across domains and applications.

5 Conclusion

This study proposed a framework for investigating the design,
fabrication, mechanics, and reliability of lattices designed with
repeating cubic unit cells. Lattices were designed and fabricated
with 500 lm beam diameters and unit cell lengths from 0.8 mm to
1.6 mm that resulted in fabricated relative densities from 23% to
82%. Measured relative density was about 8–15% higher than
designed for each structure and is related to beam diameters being
fabricated from 10 lm to 120 lm larger than average. Mechanical
testing demonstrated a linear increase in elastic modulus with rel-
ative density and an increase in relative yield stress according to a
power law. The deviation in printing was greatest for beam diame-
ters in comparison to other design parameters. The sensitivity of
random variables related to lattice failure due to yielding were
most sensitive to fluctuations in beam diameter (74%) and less
sensitive to lattice yield stress (8%) for lattices with 1.6 mm unit
cells. Lattices with smaller 1.0 mm unit cells were most sensitive
to yield stress (48%) and to beam diameter (43%). Overall, the
research framework and findings provide a means for linking
experimental data to reliability analyses useful for designers to
determine how design parameters affect performance and have
applicability to wide-ranging applications that may benefit from
3D printed lattice designs.
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