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New opportunities in design surface with scientific advances: however, the rapid pace of
scientific discoveries combined with the complexity of technical barriers often impedes
new product development. Bio-based technologies, for instance, typically require deci-
sions across complex multiscale system organizations that are difficult for humans to
understand and formalize computationally. This paper addresses such challenges in sci-
ence and design by weaving phases of empirical discovery, analytical description, and
technological development in an integrative “Ds; Methodology.” The phases are bridged
with human-guided computational processes suitable for human-in-the-loop design
approaches. Optimization of biolibraries, which are sets of standardized biological parts
for adaptation into new products, is used as a characteristic design problem for demon-
strating the methodology. Results from this test case suggest that biolibraries with
synthetic biological components can promote the development of high-performance bio-
based products. These new products motivate further scientific studies to characterize
designed synthetic biological components, thus illustrating reciprocity among science
and design. Successes in implementing each phase suggest the D; Methodology is a feasi-
ble route for bio-based research and development and for driving the scientific inquiries
of today toward the novel technologies of tomorrow. [DOI: 10.1115/1.4033751]
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1 Introduction

Scientific discoveries are often gateways for new technologies,
and in recent years, engineers have begun turning to biology for
design inspiration [1-6]. The usefulness of biological systems to
engineers also extends past inspiration, and new advances in sci-
ence [7] are revealing a promising future for redesigning and uti-
lizing biological components directly [8]. The process of utilizing
biological components in a new product, referred to as a bio-
based design [9,10], has the potential to drive the development of
new technologies for diverse applications [11-13].

In mechanical design domains, there is a great opportunity for
leveraging biological components and design principles to de-
velop technologies including nano-actuators, smart contractile
materials, and shear-triggered medicines [14]. Recently, we have
demonstrated the feasibility in utilizing computational approaches
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for designing myosin motor protein biosystems informed by sci-
entific experiments [15,16] and have conducted empirical studies
to understand and improve human bio-based design decision mak-
ing [17,18]. In this work, findings and processes from these past
studies are utilized to propose and implement a new general meth-
odology that bridges science and design for bio-based product
development.

In developing bio-based products, there is a need for new meth-
odologies due to the inherent complexity of biological systems
and the physical principles that differentiate biosystems from tra-
ditional mechanical systems. Large numbers of myosin motor pro-
teins, for instance, use chemical energy to attach to protein
filaments and exert force before detaching. Myosins are tradition-
ally known for powering muscle contractions; here, the difference
in scale from the myosin molecule to the muscle itself is very
large. A muscle contraction occurs when myosins exert force on
filaments that slide in relation to one another, which creates a cas-
cading translational motion across the multiscale organization of
muscle fibers. A single myosin operates analogously in many
respects to a traditional mechanical motor [15] but differs greatly
when considering each myosin has stochastic mechanical
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behaviors and must operate in large groups to smoothly power
muscle contractions.

Although it is now possible to engineer new myosins with
tailored properties [19,20], there are few formal approaches for
guiding the design of bio-based systems [21], partly due to the
challenges in both human and computational approaches in the
domain. Human-only approaches are limited, since the vast
number of parameter relationships and emergent behaviors of
biological systems are difficult to understand [22].
Computational-only approaches are limited due to the chal-
lenges in creating models of emergent behavior [23,24]. Due
to the limitations in both human and computational approaches,
we propose a new approach that involves humans guiding
computational processes.

Such human-in-the-loop design approaches are well suited for
engineering complex systems, since they enable human designers
to operate at a high-level and steer routine computational tasks
[25,26]. Our approach for designing bio-based products, termed
the D3 Methodology, aims to bridge science and design perspec-
tives through phases of empirical Discovery, analytical Descrip-
tion, and technological Development (Fig. 1).

At a high level, the Discover phase uncovers new information
about a system, the Describe phase aims to model and predict the
behavior of a system, and the Develop phase focuses on configur-
ing systems to achieve high-performance designs. Specific goals
of each D; phase (see Fig. 1) involve (1) performing experiments
and analyzing data in the Discover phase, (2) proposing models
and validating them in the Describe phase, and (3) conceptualiz-
ing and optimizing technologies in the Develop phase. This coor-
dinated set of three phases is particularly suitable for bio-based
design, since current scientific efforts in synthetic biology regu-
larly consist of steps for understanding, design, and analysis [21],
which map roughly to the Discover, Develop, and Describe
phases, respectively.

The D3 methodology differs from existing scientific approaches
since it focuses on design outcomes, rather than primarily focus-
ing on enhancing understanding and knowledge, and is best used
with biological systems that are already known to exist and are
potentially engineerable. Its steps are ordered such that scientific
discovery and description may be driven by a specific end-design
goal. Scientific discoveries facilitated by the methodology are
aimed toward gaining a stronger understanding of the system for
engineering purposes rather than for just generally promoting
scientific discoveries [27].

The differing order of similar phases among science (under-
stand, design, analyze) and our Dj design approach (discover,
describe, design) suggests that the starting point for implement-
ing the methodology is flexible. That is, there is potential for
designers to begin with any phase depending on their technical
expertise. A designer is expected to initiate the methodology
by inputting a base set of assumptions relevant to the starting
phase of interest.

One potential path through the phases is following Discover,
Describe, and Develop phases sequentially, which is illustrated in
the Fig. 1 example for designing new myosin technologies, and
follows a traditional progression of conducting new scientific
experiments to inform engineering decisions. The Discover phase
could consist of a defined experiment with variables to measure as
an input, which is illustrated in Fig. 1 as myosins propelling fila-
ments on a microscope slide. Empirical measurements from the
Discover phase are used in the Describe phase for modeling ex-
perimental phenomenon and are illustrated in Fig. 1 with a para-
meterized myosin model. The myosin model is used during the
Develop phase for evaluating designs that are optimized, as illus-
trated by the myosin nano-actuator in Fig. 1.

There are also input/output combinations that do not follow the
sequential ordering of phases. If the run time of a model is too
long to be useful for evaluation in the Develop phase, a constraint
on evaluation time could be set in the Describe phase. Addition-
ally, new designs found in the Develop phase may be
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experimentally tested as a means of model validation, since design
exploration will interpolate and extrapolate myosins beyond avail-
able data. The overall methodology, therefore, promotes a recipro-
cal science and design relationship [28,29] manifested
bidirectionally through (1) converting empirical discoveries into
developed technologies and (2) extrapolating beyond known sci-
entific findings to explore potentially useful designs that are then
tested. Such reciprocity has great potential for streamlining the in-
formation flow across science and design disciplines, and thereby
promoting the development of new products.

The aim of this paper is to examine the D3 Methodology’s fea-
sibility, which is accomplished by implementing a sequential iter-
ation of the D3 Methodology using myosin technologies as an
example case. A successful implementation of the D3 Methodol-
ogy should demonstrate how findings from each phase influence
one another and demonstrate the synergies of concurrent scientific
and design processes.

The paper is organized to guide a reader through one imple-
mentation of the D; Methodology, beginning with background rel-
evant to implementing the D; Methodology for a specific example
of developing biolibraries with standardized parts [30-32]. These
biolibraries share similarities with traditional engineering product
families [33]. Sections 4-6, respectively, demonstrate the imple-
mentation of Discover, Describe, and Develop phases for the spe-
cific myosin biolibrary design problem. Biolibrary configuration
is a challenging engineering optimization problem that requires
searching a large design space to find a set of myosin molecules
that support high performance across a range of nanotechnologies.
Section 7 discusses the feasibility and further applicability of the
D3 Methodology and relates the specific examples in designing

Inputs
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e Designs to test
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Outputs
e Empirical measurements
o Design validations
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Mod_el and e Design performance
Validate

Develop

AN

Conceptualize
and Optimize

Inputs
e Models for evaluation
e Empirical descriptions

Outputs
e Optimized designs
o Design extrapolations

Fig. 1 The D; Methodology consisting of a Discover phase
with generic steps for experiments and data analysis, a
Describe phase with generic steps of modeling and validation,
and a Develop phase with generic steps for conceptualization
and optimization of new technologies; example inputs/outputs
for each phase are presented in the context of myosin motor
protein research and development
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myosin nanotechnologies toward conjectures in how the D; Meth-
odology may frame future design pursuits.

2 Background

Background relevant to implementing and assessing the Ds
Methodology is briefly reviewed in three parts covering (1) inter-
sections between science and design, (2) the role of cognition for
informing a human-in-the-loop approach, and (3) computational
endeavors in bio-based design.

2.1 Science and Design Intersections. A core process in en-
gineering is the application of scientific knowledge toward creat-
ing new designs, although there is much debate concerning which
reasoning processes belong to science versus design [34—37]. Tra-
ditional arguments often characterize science as the study of
things that exist naturally, while design is characterized as the cre-
ation of things that do not exist naturally. These notions tend to
blur when considering biologically based design disciplines where
natural systems are studied and utilized to engineer new systems.

Although not the focus of this work, bio-inspired approaches in
engineering have had great success for promoting new technolo-
gies, which includes directly mimicking biological systems with
biomimicry [8,38] and transference of functional principles to
new designs with functional-based approaches [1-5]. Biomimicry
approaches tend to map biological structures or behaviors directly
to a new design, such as synthetic organisms that mimic jellyfish
swimming [8] and materials that have repeating structures similar
to organic materials [38]. Functional-based approaches tend to
map design principles or functionality of a biological system to a
new application, which could have an analogous function but very
different structure and behavior [2]. Engineering design
approaches have been developed for recognizing biological analo-
gies and functionalities, such as retrieving functions from natural-
language text [1]. There is also the development of tools for man-
aging the large amount of biological knowledge available to engi-
neers [5]. The growing use of and research on bio-inspired
approaches suggest that engineers have great interest in learning
about biology, which could lower the barrier for designers to uti-
lize learned biological knowledge toward the development of
technologies with biological components [39-42].

Synthetic biology, which is the focus of this paper, is different
from bio-inspired design. Synthetic biology is an emerging field
focused on the engineering of biological systems with a goal of ei-
ther gaining greater scientific insights or developing new technol-
ogies that are biologically based [21]. There are approaches for
both modifying existing biological systems and engineering new
biological systems from existing molecular components. Although
natural biological systems are often highly optimized for specific
functions through evolution [43], there is much room for engi-
neering improved systems for new applications that do not exist in
nature. Design decisions in biological domains are inherently
limited by the available building blocks that make up biological
components, such as proteins. Despite these constraints on the
building blocks, designing even a single protein is a complex en-
gineering task [44], since stochastic properties of biological sys-
tems make many precise calculations and predictions challenging.

2.2 Cognitive Processes for Complex Systems Design. The
inherent complexity of biological systems makes them difficult to
formalize computationally, so there is a need to consider involv-
ing human designers when developing technologies. It is possible
to leverage the strengths of both humans and computers in design-
ing systems through a human-in-the-loop approach [25,26].
Human-in-the-loop approaches are well suited for complex
systems design, since they enable human judgment to eliminate
unrealistic designs rapidly or to provide creative input [25].
Experiments have demonstrated that utilizing human designers in
the loop can result in finding higher quality designs with fewer
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function evaluations [26]. In order to effectively utilize human
designers in the loop, it is important to consider not only their
strengths but also their limitations, such as a human designer’s
limited capability to consider many parameters simultaneously.

A foundational psychology study long ago demonstrated that
the amount of information humans may consider is severely lim-
ited to just a handful of independent elements at any one point in
time [45]. Such limitations inhibit a human designer’s ability to
search a parameter space for optimal solutions [46]; human per-
formance has been measured to geometrically decline as the num-
ber of considered parameters increases. The decline in human
design performance was hypothesized to occur due to the limited
amount of information a human may consider in their working
memory. These considerations informed our recent experiment to
measure designer search performance with four design inputs and
up to two design outputs involving myosin technologies [17,47].
The study demonstrated that human designers’ performance
declined as the number of output constraints increased on a prob-
lem statement.

A human designer’s search performance may be improved
through appropriate system representation, such as using
structure—behavior—function paradigms to facilitate understanding
of system interactions [48,49]. Structure—behavior—function repre-
sentations are particularly well suited for reasoning about complex
systems. In the structure—behavior—function paradigm, structures
refer to components of a system; behaviors refer to mechanisms
and interactions of components; while functions refer to goals of
designs or components. Our past work with myosins led to the
development of a myosin agent-based simulation within a
structure—behavior—function paradigm. In the simulation, each
myosin’s structure was designable and linked to behaviors that
influence design performance [15]. Human designers interacting
with the agent-based simulation gained understanding of the sys-
tem that improved their ability to search a parametric design space
[18]. These studies offer validation for using a parametric design
representation for the human-in-the-loop approach. Determining
the best representation of a system is difficult [50], especially
since optimal representations will likely differ for novices and
experts in a domain [51]. In particular, novices will likely perform
better with representations that simplify systems to a few core var-
iables, while experts may benefit from a more complicated repre-
sentation that enables a higher degree of fine tuning design
configurations.

2.3 Bio-Based Computational Design. The use of agent-
based simulations is beneficial from a biological modeling per-
spective, since the development of analytical models is not always
sufficient for concisely and accurately modeling systems [52,53].
For instance, a few bottom-up rules employed by agents that rep-
resent different proteins can replace large series of differential
equations for describing molecular interactions. It is possible to
validate agent-based models through using reverse engineering
methods for fitting models to natural and complex systems
[54-56]. Generally, these approaches propose a feasible model,
simulate it, and then compare the simulated results to empirically
measured results. If there is not a close match, a new model may
be proposed and the process is repeated.

Once computational biological models are validated, they may
be utilized to evaluate new system configurations that are repre-
sentative of designs. In our past work, agent-based myosin models
were validated with empirical data [16] and provided a means for
evaluation in engineering optimization tasks representative of my-
osin technologies [18]. Since these tasks represent a variety of
technologies, an interesting design problem emerges when consid-
ering the best set of myosins for use in all technologies, such as
selecting myosins from a design catalog.

There is a rising interest in developing tools and standardized
biological parts that could form the foundation of a myosin design
catalog [30-32]. Although there is relatively little prior work in
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the computational optimization of myosins for design, consider-
able effort has been put into studying, modeling, and engineering
myosins to learn about their structures, behaviors, and functions
[19]. These studies can form the foundation for developing a cata-
log, referred to in this paper as a biolibrary of myosins, for use in
developing myosin-based technologies [39—42].

A biolibrary of standard useful myosins may enable a de-
signer to focus on selecting myosins for use in new systems,
rather than creating new myosins for every design application,
which is similar to selecting standard nuts and bolts to config-
ure products or reusing components to form a product family
[33]. Biolibraries may consist of myosins already existing in
nature [57] or novel synthetic myosin designs that may have
superior behaviors and performance [20,58]. The optimization
of a range of devices selected from biolibrary components
could leverage existing design methods, such as software
agents selecting design components from a catalog [59].
Agent-based optimization is well suited for searching complex
design spaces and may be conducted in a domain-general man-
ner through representing designs as binary strings [60] that
could represent both individual myosins in a biolibrary and
myosin-based technologies.

3 D3 Methodology for Myosin Biolibrary Design

The D3 Methodology aims to promote product design by bridg-
ing science and design processes across three iterative and flexibly
ordered phases of empirical discovery, analytical description, and
technological development. Since the overall methodology
emphasizes engineering endeavors, the Discover phase seeks to
uncover new understandings of bio-based components that are
potentially well suited for use in designed products. The develop-
ment of myosin biolibraries is used as a test case for sequentially
implementing the three D3 phases. Myosins are well suited for
design endeavors since they are engineerable molecules that pro-
vide a basis for a number of nanotechnologies.

We define a biolibrary in the context of myosins as a set of var-
ied myosin designs that are flexibly deployed across particular
applications. Myosins often operate in groups to generate power,
rather than in isolation; groups of myosins are referred to as bio-
system blocks, which are small units that may be interfaced in
various organizations to form myosin technologies such as syn-
thetic muscle [39,40], contractile materials [41], and bio-based
nano-actuators [42]. Therefore, biolibraries should be assessed
based on their capability for promoting high performance across a
set of myosin groups (Fig. 2).

Myosin Bio-library

Biosystem Blocks

All of the nanotechnologies shown in Fig. 2 operate through the
fundamental function of myosins stochastically exerting force on
filaments. For synthetic muscles (top right of Fig. 2) and nano-
actuators (bottom right of Fig. 2), the net result of myosin force
creates translational filament movement. Contractile materials
(middle right of Fig. 2) generally contract to a smaller size as
myosins generate force. The eight myosin isoforms illustrated on
the left in Fig. 2 have varied geometrical configurations that are
representative of different isoforms; up and down arrows illustrate
differences in each myosin’s chemical rates of attaching and
detaching to a filament, respectively.

There are a number of existing myosin isoforms with different
behavioral properties for use in nanotechnologies [57]; isoforms
are families of molecules with slight structural differences that
lead to different performances for a given function. New myosins
are still being discovered [61,62], and there are potentially many
undiscovered myosins since many animal species have unique iso-
forms not found in other species. Further, it is possible to design
and fabricate synthetic myosins with altered behaviors that may
provide superior performance over natural isoforms [20,58]. One
of the most common approaches for manufacturing new myosins
is the transference of parts from one myosin isoform to a second
myosin isoform, thus creating a new myosin with hybrid proper-
ties. It is also possible to create protein parts for insertion in myo-
sins, such as lever arms of varied lengths [19] that influence both
how long a myosin remains attached to a filament and a myosin’s
output force.

The design of myosin biolibraries is relevant to cost and
performance trade-offs for potential bio-industry applications,
such as a company or laboratory’s decision to utilize a bioli-
brary of natural isoforms or synthetic myosins custom designed
for each application. Depending on available company resour-
ces, there may be different costs associated with using syn-
thetic or natural myosins. Therefore, there is a need for early
feedback on the likely performance of manufacturable myosins,
since manufacturing of biological technologies is often costly
and difficult [38]. The D; Methodology aims to aid in these
decision making endeavors by presenting a framework for
guiding a human scientist or designer toward isolating cost-
effective solutions sooner.

Sections 4, 5, and 6 of this paper are focused on a specific
implementation of the D3 Methodology for the development of
optimized myosin biolibraries, with each section concentrating on
one phase of the methodology tied to understanding, modeling,
and designing myosin systems. Specifically, natural myosin iso-
forms are characterized in Secs. 4 and 5 in the Discover and

Nanotechnologies

Fig. 2 Schematic of a biolibrary with varied myosin designs, biosystem blocks consisting of
myosins from the biolibrary, and nanotechnologies constructed from biosystem blocks. lllus-
trated nanotechnologies from top to bottom include a synthetic muscle, contractile material,

and nano-actuator.
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Describe D3 phases, respectively. Natural myosins are then con-
trasted with synthetic isoforms extrapolated from the model in
Sec. 6, which focuses on the Develop Dj phase.

4 Discover Phase: Experiment and Analyze

The Discover phase requires a human to carry out scientific
experiments, which are then analyzed quickly through computa-
tional approaches. Experimental measurements are the inputs to
the Describe phase, which validates models with experimental
findings and enables design evaluation in the Develop phase. The
human experimenter in this phase is important, because they can
make decisions in how data are collected and what data are col-
lected. These decisions influence which automated approaches
may be used in later D3 phases to model and optimize the system.

In the context of biolibrary development, empirically character-
ized natural myosins could form the foundation of a biolibrary of
myosins with different performance characteristics for use in
designed products. However, before they are usable in the Design
phase, their behaviors must be measured and modeled. Myosin
mechanical behaviors are often inferred by recording microscopy
videos for measuring the velocity of filaments propelled by myo-
sins anchored to a microscope slide [19]. Automated filament
tracking methods may then be utilized to quickly and reliably
measure filament velocities from a given experiment [63,64] and
potentially provide a large body of data for validating myosin
models.

In our work, chicken skeletal muscle myosins were utilized to
validate an automated tracking and aggregation approach that
tracked filaments based on their centroid location across images
extracted from microscopy videos. Images were preprocessed to
aid consistent finding of centroid locations across frames; prepro-
cessing steps will differ based on video quality from different lab-
oratory setups but are essential to reduce noise across frames and
provide consistent filament shapes.

Automated tracking results were validated against manually
tracked [65] measurements collected by two independent users
that tracked filament locations across fames. Figure 3 presents
manually and automatically tracked results of filaments propelled
by chicken skeletal muscle myosins for 3.8 s.

Results show a close resemblance in track shapes obtained with
both methods, which provides an initial qualitative validation.
Data were then aggregated by averaging the velocities of each
individual track within a video across multiple repeated experi-
ments/videos. Data aggregation for the manually tracked filaments
provides a calculated mean velocity and standard error of
5.16 um/s £0.31 um/s that closely match the automatically

tracked filaments’ mean velocity and standard error of 4.93 um/
s £0.32 um/s. These results demonstrate that the automated
method is capable of analyzing empirical data quickly and accu-
rately. The use of the automated tracker enables the gathering of
large sets of data for validating models in the Describe phase that
are used for evaluating designs in the Develop phase. Because the
models are used for interpolation and extrapolation in the Develop
phase, it is particularly important to validate the models in the
Describe phase against a range of empirical data, which, in turn,
depend upon efficient data analysis techniques in the Discover
phase.

The data specifically provide the velocity of a filament traveling
relative to a given myosin, which enables myosin behaviors to be
inferred when different experimental conditions are introduced
and by considering models that link structural features of myosins
to their expected performance in propelling filaments. In this pa-
per, we consider experimental conditions of using two different
types of myosins and also an additional molecule type [66] that
exerts a force on the filament that myosins must work against.
These conditions enable the reverse engineering of myosin design
parameters through comparing model predictions with measured
empirical data.

5 Describe Phase: Model and Validate

Once data are obtained from the Discover phase, modeling is
required to describe biophysical phenomena for evaluating config-
ured designs. The Describe phase consists of proposing a model
with design inputs, and then manipulating those design inputs
until they provide a performance description consistent with
measured empirical data. Validated models are crucial for design
exploration in the Develop phase, since they enable analytic rather
than trial-and-error exploration of the complex product space. The
use of validated models enables the evaluation of myosin designs
within a biolibrary to determine their usefulness for promoting de-
sirable product performance.

Although other models for evaluating biological systems exist
that could be used in the Describe phase [67], agent-based simula-
tions are used in our implementation since they promote human
understanding of complex systems [18,22] that is essential, since
humans are expected to guide computational processes in the
overall D3 approach. Additionally, agent-based simulations are
modular, which means that many mechanically based molecules
are representable with few modeling modifications, such as using
a single agent-based simulation to model both myosins and alpha-
actinin molecules; alpha-actinins are proteins that interact with
the same filaments as myosin. Alpha-actinins are commonly used

Filament
Tracking Method

== Manual
=== Automated

Fig. 3 Automated and manual tracking of filaments propelled by myosins over time. The
movement of select filaments is indicated by lines that trace each filament’s location across
frames. In the t=0s frame, all displayed objects are imaged filaments, since there are no
tracking lines.
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T: Detach and

change state to 0

Fig. 4 Agent-based model with (a) rules for simulated molecules and (b) renderings of myo-
sin (one globular end) and alpha-actinin (two globular ends) molecules. Left-facing arrows are
positive forces that propel the filament; right-facing arrows are negative forces.

in myosin experiments for simulating a force load [66] and are
generally assumed to attach to filaments and provide loading as
passive springs that impede filament motion.

Our past agent-based implementation for simulating myosins is
modified to a more generalized representation (Fig. 4(a)) that ena-
bles the simulation of alpha-actinin (Fig. 4(b)). All simulation
details provided in this paper are identical to past implementations
in Refs. [15,16], and [68], with only relevant details to the present
discussion provided.

The simulation environment emulates experiments from the
Discover phase, with a discrete number of myosins and alpha-
actinins interacting with a filament moving at constant velocity.
Each molecular agent operates autonomously according to a
three-state cycle (Fig. 4(a)) of being detached (state 0), attached
with positive displacement (state 1), and attached with negative
displacement (state 2). Since alpha-actinins only generate force
that impedes filament motility, they are assumed to attach with a
displacement of zero and skip the positive force generation phase,
which is reflected in Fig. 4(b) simulation rendering.

Parameters describing alpha-actinin configurations are deter-
mined by tracing alpha-actinin and myosin biophysical behavior
through the logic of Fig. 4(a). Alpha-actinins have a stochastic
chance to attach to the filament with attachment rate k,, and gen-
erate force f,, based on their stiffness k and displacement d from
their initial position, such that f,, = k - d. Alpha-actinins have a
much slower detachment rate than myosins (possibly as low as
10s7! [66]) and are assumed to detach at displacement d, that
causes bond rupturing [69], which is modeled deterministically.

The simulation is run with measured filament velocities from
the Discover phase to empirically validate proposed parameter
values for myosin and alpha-actinin. Known parameter values
describing chicken skeletal myosin [19] assume myosins have a
lever arm length of /=10 nm, an attachment rate of k., =900 s L
and a detachment rate of k.= 1600 s7!; these parameters are in-
dicative of how long a myosin generates positive force, its chance
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of attaching to a filament, and its chance of detaching from a fila-
ment, respectively. Through algorithmic methods of proposing an
alpha-actinin configuration and determining the steady-state
velocity of the system, an alpha-actinin configuration of
k=2.5pN/nm, k,,= 1500 s7!, and d,=30nm is found to fit
strongly with empirical measurements (Fig. 5(a)).

Known alpha—alpha actinin parameter values are used to deter-
mine the parameter values of an unknown pig cardiac muscle my-
osin with experimental data (Fig. 5(b)). Pig cardiac myosins are
assumed to have a /=10nm lever arm length that is typical of
muscle myosins. A strong agreement of model to data in Fig. 5(b)
data occurs when ko = 2505~ and ko, = 125 s71. The resulting
parameter values for each myosin isoform are presented in
Table 1.

Table 1 findings are consistent with pig cardiac myosin having
a lower energy usage rate and velocity than chicken skeletal mus-
cle myosin [70]. The data suggest that the myosins have contrast-
ing attachment and detachment parameter values that may
influence the performance of configured nanotechnologies from
myosin biolibraries and importantly show that the reverse engi-
neered myosin parameter values match myosin system behavior in
Fig. 5. The results show the feasibility of reverse engineering my-
osin models through interpreting data collected in the Discover
phase, which enables evaluation of myosin designs in the Develop
phase.

6 Develop Phase: Conceptualize and Optimize

Models from the Develop phase form the basis for generat-
ing and evaluating designs that can be compared and consid-
ered for use in products. For the myosin example study, the
empirically validated model from the Describe phase is utilized
in the Develop phase to configure and evaluate myosins and
biosystem blocks for the biolibrary design problem described
in Sec. 3. Biolibraries are catalogs of varied myosin isoforms,

(b) 10 Pig Cardiac
il Muscle Myosin

-
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& 5 —Simulation
T
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0 1 2 3
Alpha-actinin Concentration (ug/mL)

Fig. 5 Measured and simulated data of average filament velocity for (a) chicken skeletal
muscle myosin and (b) pig cardiac muscle myosin experiments when varied concentrations

of alpha-actinin molecules are introduced

081101-6 / Vol. 138, AUGUST 2016

Transactions of the ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 06/16/2016 Terms of Use: http://www.asme.or g/labout-asme/ter ms-of-use



Table 1 Reverse engineered myosin parameters

Table 2 Genes, units, value ranges, and number of bits for
myosins

Natural Lever length Attachment Detachment

myosin (nm) rate (s~ 1) rate (s~ 1) Myosin gene Symbol  Units Minimum Maximum  Bits

Chicken skeletal 10 900 1600 Myosin lever [ nm 6 14 2

Pig cardiac 10 125 250 Myosin angle 0 deg 30 45 1
Myosin attach rate Kon s 100 1800 3
Myosin detach rate kot st 200 3200 3

and a desirable biolibrary should contain a set of myosins that
enables the configuration of a variety of high-performance
nanotechnologies.

6.1 Biolibrary Design Representation. Myosin biolibraries
potentially consist of many isoforms with multiple design varia-
bles. Concise and modular design representations are essential to
promote human understanding of the multilevel design space. The
lowest level of the design space refers to the configuration of a
single myosin and the highest level refers to how myosins are
organized to function as systems.

A biolibrary is represented as a discrete set of myosins,
with each myosin design having its own set of design parame-
ters. Myosin technologies are not modeled explicitly, but rather
represented by biosystem blocks that are the smallest unit of
multiple myosins with performance attributes characteristic of
complete products. It is necessary to evaluate myosin perform-
ance when configured as biosystem blocks since myosins must
operate in groups to function; a myosin operating by itself will
not propel a filament because the filament is likely to travel
out of the reach of a single myosin due to diffusion when the
myosin is detached. Biosystem blocks are used for evaluation
rather than specific nanotechnology applications to provide an
application-independent approach for assessing a biolibrary’s
usefulness.

Myosin biolibraries are evaluated based on how well they fulfill
varied biosystem block functionalities, rather than rating individ-
ual molecules within the library. Biosystem blocks are evaluated
according to how well they fulfill performance requirements rep-
resentative of potential nanotechnology functional requirements
[17,18]; specifically, these evaluations rate how well a biosystem
block achieves a particular performance goal without violating
any design constraints. Each biosystem block has two design pa-
rameters: one for selecting a myosin from the biolibrary and one
for determining the number of that particular myosin used to con-
struct the biosystem block.

Binary string representations [60] are used that carry all infor-
mation required to configure a biolibrary and place its myosins in

Table 3 Genes, units, value ranges, and number of bits for bio-
system blocks

Biosystem block gene  Symbol ~ Units Minimum Maximum  Bits
Selected isoform myo — 1 8 3
Number of myosins N # 30 150 3

a set of biosystem blocks for evaluation. The binary strings have
two parts for (1) representing configured myosins in a biolibrary
and (2) representing biosystem blocks that are configured from
myosins in the biolibrary (Fig. 6).

In Fig. 6, each binary string represents a biolibrary with two
myosin isoforms (Myosin; and Myosin,) that each have two bits
representative of a myosin’s attachment (e.g., two bits for ko,; for
Myosin; and two bits for k,,, for Myosin,) and two bits represen-
tative of a myosin’s detachment rate. There are three biosystem
blocks that each have one bit for determining which isoform is
placed in the biosystem (e.g., if the Myo, bit is turned off for
Block;, Myosin; is placed in Block;; if the Myo, bit is turned on
for Block,, then Myosin, is placed in Block;). Each biosystem
block also has one bit for determining how many myosins are
present. Each binary string contains 14 bits of information, result-
ing in 2'* ways to configure the biolibrary and place its myosins
in biosystem blocks. In sum, each binary string contains informa-
tion that describes the configuration of all myosin designs within a
library, and how they are placed in each biosystem block for eval-
uation in relation to potential myosin technology performance
metrics. Additionally, it is possible to alter the design space by
increasing or reducing the number of genes that describe myosins
or biosystem blocks, and the number of bits that determine the re-
solution of values for each gene.

In Tables 2 and 3, genes for each myosin and biosystem block
are presented for the most complex optimization case considered
in this paper. Myosin parameters include myosin lever arm
length /, step angle 0, attachment rate k,,,, and detachment rate k¢

Binary Strings Converted into Design Representations

Myosin,

Binary String, >

on off
Binary String, ‘( 1

Myosin,

ol

Myosin, Block, Block, Block,
Kon2 2 Myo, N, Myo, N,  Myo; Nj
Myosin, Block, Block, Block;,

-IIII-I-\>
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17

-I_I_IEII_I_I BN (1] NN
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Fig. 6 Binary strings of biolibraries and biosystem blocks. Darkly shaded boxes represent turned on bits in genes mapped to

design inputs.
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(Table 2). Biosystem block parameters include selected myosin
myo and the number of myosins present N (Table 3), which deter-
mine a biosystem block’s size. Minimum and maximum parame-
ter values were informed by findings in the Describe phase and
known values from natural myosin and myosin engineering
experiments [20,57].

Each Table 2 and 3 parameter has a minimum value when all bits
are turned off and a maximum value when all bits are turned on. In-
termediate values are calculated based on a gene’s maximum num-
ber of bits, and which bits are turned on and off. It is possible to
alter the number of bits for each Table 2 and 3 design parameter to
broaden or restrict a design space search; changing the number of
bits will also alter the binary string size. To elaborate, there are
many more decision variables to consider when finding an optimal
biolibrary of synthetic myosins, since each individual myosin has
four design parameters in comparison to a biolibrary of natural myo-
sins that has no alterable design parameters for individual myosins.
Natural myosins represent already configured myosin isoforms that
are extracted from existing biological systems. Therefore, evaluating
the usefulness of a natural myosin biolibrary only considers deci-
sions related to placing different available myosins in varied
amounts for use in potential nanotechnology applications.

Functional requirements that represent myosin nanotechnology
attributes are used to assess the performance of configured biosys-
tem blocks. Eight functional requirements were generated accord-
ing to effective rules from past studies [17,18] and represent a
diverse set of metrics for evaluating how well a biolibrary enables
the configuration of a variety of high-performing nanotechnolo-
gies, referred to as a biolibrary’s robustness. In this sense, robust-
ness [71,72] refers to the potential for the set of myosins that
make up a biolibrary to enable the configuration of myosin-based
technologies with insensitivity to the specific performance needs
of each technology. A nonrobust biolibrary would be skewed to-
ward enabling only high performance in a limited set of technolo-
gies, such as promoting actuating technologies that require
myosins with force—velocity properties different than those well
suited for medical diagnostics technologies.

Each functional requirement has a design goal representative of
an objective function and up to two constraints. These require-
ments are shown in Table 4 and, as an example, the third set of
requirements stipulates that an optimal biosystem block must
have the lowest average number of attached myosins possible,
while maintaining a filament velocity of at least 3.2 um/s.

The functional requirements represent a wide range of condi-
tions relevant for assessing myosin technologies, such as modulat-
ing energy effectively or achieving a fast filament translation.
Force is considered as external stimuli, rather than a requirement,
and a typical value of 10 pN is used for all evaluations. Having a
set of eight requirements creates a large design space that makes it
difficult for a human designer or a computational search to find
the global optimum design. However, an initial computational
search may find good designs that are then improved by humans,
since each individual functional requirement is representative of a
design configuration within the realm of human understanding.

6.2 Biolibrary Design Search. Biolibrary robustness is eval-
uated as an objective function for design searches by averaging
the performance of a set of eight configured biosystem blocks,
with a unique biosystem block evaluated for each Table 4 func-
tional requirement. Robustness is a unitless value, since objective
function values are nondimensionalized when evaluating Table 4
tasks to enable meaningful comparisons for tasks with different
units (e.g., velocity is evaluated according to um/s while energy is
evaluated with units of ATP/ms). Specifically, the objective value
for each functional requirement is assessed from 0 to 1 based on
how well a biosystem block performs with respect to the global
optimum performance possible for that particular functional
requirement. All biosystem blocks that do not meet constraints are
given a score of —1, which generally ensures that the most robust
biolibraries found satisfy all requirements such that no biosystem
block fails [73].

To determine an objective function score between 0 and 1, the
difference in a biosystem block’s goal performance and its global
optimal goal performance is determined and then divided by the
range of all possible goal performance values for that particular
requirement. The global optimum is determined by placing an opti-
mal synthetic myosin in each block for an optimal system size based
on Tables 2 and 3 variable ranges. Therefore, the worst design that
does not violate constraints always has a score of 0 and the best
design has a score of 1 for each biosystem block. The evaluation of
each biosystem block is straightforward using analytical models
[15], which make it computationally nonintensive to assess the per-
formance of a configured biosystem block but difficult to configure
an optimal biolibrary. Although configuring and evaluating biosys-
tem blocks is necessary for evaluating a biolibrary’s robustness,
biolibraries themselves only refer to a set of myosins. Having both
myosin biolibrary and biosystem block configurations in a single bi-
nary string representation enables an efficient way for representing,
manipulating, and evaluating a biolibrary’s design and organization
into biosystem blocks during design searches.

A stochastic optimization algorithm [60] was developed to
search the biolibrary design space of eight synthetic myosins
being configured for eight biosystem block functional require-
ments. The approach was modified to improve search results by
separately altering the binary string portion that represents myosin
biolibrary design and biosystem block configurations on alternate
iterations, rather than manipulating the entire binary string on
each iteration. The algorithm was run numerous times due to the
stochastic nature of search results. Table 5 demonstrates the best
biolibrary found after 20 runs of the algorithm for the longest pos-
sible binary string from Tables 2 and 3, which consists of 120 bits
or 1.3 x 10% possible configurations. These myosins are represen-
tative of synthetically designed isoforms, since they possess struc-
tural configurations not tied to any known myosins but are
potentially manufacturable [19,58].

Table 5 shows that each configured biosystem block is unique.
However, two of the myosin isoforms are used twice (for require-
ments two and three, and for requirements four and five), meaning
the biolibrary design output by the optimization algorithm

Table 4 Biosystem block functional requirements

Req # Design goal Goal constraint Secondary constraint

1 Highest avg# of attached myos <5.7 (Naw) None

2 Highest filament velocity None System energy use < 2.3 (ATP/ms)
3 Lowest avg# of attached myos <5.4 (Naw) Filament velocity > 3.2 (um/s)

4 Highest energy density None None

5 Highest system energy use <2.3 (ATP/ms) None

6 Highest filament velocity None Avg# attached myos < 5.8 (V)

7 Lowest avg# of attached myos <5.4 (Naw) System energy use < 1.2 (ATP/ms)
8 Highest adjusted system energy None System energy use < 4.0 (ATP/ms)
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contains six unique myosins. Myosins from Table 5 include myo-
sins with long (isoforms 1 and 2) and short (isoforms 3 and 4) le-
ver arms that influence how long they remain attached generating
positive force on a filament; myosins with high (isoforms 1 and 2)
and low (isoform 3) attachment rates that influence how fast they
consume energy, with higher energy use enabling them to cycle
faster; and myosins with high (isoforms 2 and 3) and low (isoform
6) detachment rates that influence how fast they detach from a fil-
ament, which decreases the time they exert negative force that
impedes filament movement.

There are no general trends for the best myosins or systems
with respect to isoform/system configurations, and values for all
parameters are expressed across their full range. The biolibrary
also has high performance across all functional requirements, with
only two of the functional requirements being less than 0.9, thus
supporting the notion that this is a highly robust biolibrary. A
human user could use this information to modify the biolibrary to
improve objective function three and eight (the lowest performing
cases) through making small changes to variables or considering
configurations from alternate high performing biolibraries.

Due to the algorithm’s capability for finding high-performance
biolibraries in the most complex case, it is expected that the algo-
rithm will also find near global optimum designs for less complex
search cases. Based on these findings, and considering cost and
performance trade-offs not explicitly considered in the computa-
tional search, it is possibly more beneficial to have a biolibrary
with four isoforms of generally robust performance with a poten-
tially lower cost than is required to manufacture and maintain six
unique isoforms. Such considerations are difficult to program for-
mally since they represent criteria unique to a particular design
scenario, which further motivates the need for ensuring outputs
from the optimization process are interpretable by human decision
makers.

6.3 Natural and Synthetic Biolibrary Comparison. The
myosins empirically measured and reverse engineered from the
Discover and Describe phases resulted in design parameter values
that describe two natural myosins that may be compared with syn-
thetic isoforms. Results from such comparisons can inform scien-
tists and engineers of differences among natural or synthetic
myosins for design performance and motivate future experiments

to better characterize myosins that are useful for configuring
potentially high performing nanotechnologies.

To determine trade-offs in biolibraries consisting of different
myosins, constraints are introduced that restrict the myosin bioli-
brary design space. For myosin biolibraries with only natural iso-
forms, a constraint is placed so myosins possess static values that
reflect the measured values of existing isoforms found in nature.
When these values are static, it results in the removal of genes
from the binary string that represents biolibrary design decision
variables, and therefore results in a smaller binary string. Once a
binary string is created that reflects relevant design decision crite-
ria, the optimization algorithm is used to optimize the configura-
tion of the particular biolibrary for its use in Table 4 functional
requirements when it is evaluated for robustness.

Since the algorithm was demonstrated to find near global opti-
mum designs on the longest binary string possible to configure
with Table 2 and 3 parameters, which are supported by Table 5
results, it is expected to perform as well or better in finding near
global optimum designs on design representations with smaller bi-
nary string lengths. Therefore, differences in comparing biolibrary
robustness likely reflect the highest possible robustness achievable
with a given biolibrary, rather than limitations in the algorithm’s
capability for configuring bioblocks optimally for a given
biolibrary.

In Fig. 7(a), biolibraries are optimized for robustness with one
of the two natural isoforms placed in all eight biosystem blocks in
varying amounts. The resulting binary string representation has no
genes for describing myosin design parameters since all parame-
ters have static values that reflect natural myosin configurations.
All bits are retained for biosystem block genes that determine how
many myosins are placed in a system, but biosystem blocks have
no bits for describing which myosin isoform is chosen since there
is only one natural isoform considered for placement in all sys-
tems. Design decision variables consist entirely of how many of
each myosin to place in each biosystem block with functional
requirements according to Table 4. If an output table for this
design case was created, similar to Table 5, it would contain one
myosin isoform with static values and eight biosystem blocks of
potentially different sizes.

In Fig. 7(b), the design space is expanded by considering vari-
able numbers of synthetic isoforms and how they are placed in
different biosystem blocks. Therefore, the biolibrary portion of

Table 5 Most robust biolibrary for fulfilling biosystem block functional requirements

Biosystem block Myosin isoform Tllustration

Req (#)  Objective function  Isoform (#)  Nyyo (#)  Lever (nm)  Angle (deg)  kon (s~ Y kopr(sTH System Myosin

1 0.96 1 81 14 45 1557 1914 T?l

2 0.94 2 132 14 45 1314 3200 t?
{

3 0.79 2 47 14 45 1314 3200 T?
1

4 0.98 3 30 6 30 343 3200 t_f?
4

5 0.97 3 98 6 30 343 3200

6 0.96 4 150 6 45 1071 2343

7 0.99 5 81 8.67 30 1071 1486

8 0.81 6 150 8.67 30 1800 200
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the binary string has a number of genes proportional to the num-
ber of designable synthetic myosins, with each myosin isoform
having four genes reflecting design parameters in Table 4. The
biosystem block portion of the binary string retains all bits for
configuring biosystem block size, and 0, 1, 2, or 3 bits to deter-
mine which isoform is used in each block depending on whether
the biolibrary has 1, 2, 4, or 8 synthetic myosins, respectively. If
an output table for this design case was created similar to Table 5,
it would contain a variety of myosin isoforms, up to the number
of synthetic myosins allowed, and eight biosystem blocks of
potentially different sizes.

An additional system level constraint is introduced for each
design search to investigate the robustness a biolibrary may
achieve when all biosystem block sizes are held constant. This
constraint reduces the number of system level variables and there-
fore puts more emphasis on ensuring a diverse set of myosins are
present in a biolibrary. The binary string for this configuration
would change by having its genes for altering biosystem block
size removed. This design space reduction is relevant to volume-
limited applications, such as configuring a nano-actuator con-
strained to a particular length that would always require the same
number of myosins. When biosystem block size is held constant,
it is always representative of a system with 150 myosins, which is
the number typically found operating together at the smallest
scales in muscle [74]. If an output table for this design case was
created, similar to Table 5, all eight biosystem blocks could poten-
tially have different natural/synthetic myosin isoforms but would
always have 150 myosins.

When considering only cases when biosystem block size is not
constant, the results show that biolibraries with one synthetic iso-
form outperform both biolibraries with one natural isoform each.
The findings suggest that the tuning of synthetic isoforms for par-
ticular applications is beneficial, and the fine-tuning of a single
myosin can ensure it promotes performance across a range of
potential applications for configuring nanotechnologies. Increas-
ing the number of synthetic myosins in a biolibrary improves
robustness, although there is not much gain in increasing bioli-
brary size from four synthetic myosins to eight synthetic myosins.
Therefore, biolibraries consisting of four synthetic myosins are
possibly the most cost effective when considering the cost to pro-
duce and maintain each myosin compared to the performance of
the biolibrary for these potential applications. However, a final
selection of the best biolibrary is dependent on contextual infor-
mation currently outside of the formalized design framework that
a human designer may possess, such as manufacturing and main-
tenance costs.

When the biosystem block size was set to a constant 150 myo-
sins, it resulted in lower robustness for all cases, which is
expected since there is a reduction in the number of design deci-
sion variables available. The drop in performance was lessened as
more myosins were included in a biolibrary, such that a biolibrary
design with eight synthetic myosins available had robustness that
was insensitive to the constraint concerning biosystem block size,
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since there is always a myosin available to design appropriately
for a given biosystem block.

The biolibraries and the evaluation of configured biosystem
blocks at this point would require further empirical validation, as
they represent extrapolations and interpolations from a model
reverse engineered during the Describe phase based on limited
data available from the Discover phase. In this sense, the designed
biolibraries are conceptual in nature and early indicators of poten-
tially high performing myosin isoforms and biosystem block con-
figurations. Further steps continuing from the Develop phase
would require a new iteration of the D3 Methodology, with opti-
mization findings informing which natural or synthetic myosins to
investigate with empirical discovery and analytical description
methods.

7 Discussion

The discussion section considers the feasibility of the D; Meth-
odology, its use as a human-in-the-loop design approach, its find-
ings for biolibrary development, and its potential for use in other
application areas.

7.1 Feasibility of D; Methodology. The D; Methodology
aims to weave concurrent scientific and design processes through
phases of empirical discovery, analytical description, and techno-
logical development. Its feasibility was tested in this paper with a
myosin biolibrary design problem. Each D; phase was imple-
mented sequentially, with findings from earlier phases informing
later phases. Empirical data output from the Design phase was
considered as an input for the Describe phase, and the model vali-
dated in the Describe phase was used as an input for evaluating
designs in the Develop phase. The successful transference of
inputs and outputs across Discover, Describe, and Design phases
resulted in the optimization of biolibraries from empirical data,
which demonstrate the usefulness of the methodology.

This initial implementation provides a basis for proposing
future steps that could explore the iterative and nonlinear nature
of the proposed Fig. 1 D; Methodology, or applying the methodol-
ogy for further applications, which is beyond the scope of this pa-
per. For instance, optimization findings represent extrapolations
and interpolations of myosin designs from empirical evidence,
which requires further validation through new empirical experi-
ments and modeling refinements. Additionally, new hypotheses
may be tested in the Describe phase to investigate myosin behav-
iors not considered in the agent-based model, which is effectively
a first-order approximation of myosin behavior. These considera-
tions are important because optimization findings could deviate in
an unknown manner from the reverse engineered model.

Care was taken in this implementation to extrapolate new iso-
forms with configurations near the empirically measured natural
myosins and relevant to synthetic myosin experiments. It is likely
that these extrapolations are generally accurate since they are con-
servative extrapolations relative to the more extreme myosin
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configurations found in nature that still fundamentally operate on
the same principles as myosins modeled in this study [61,75].
Such conservative extrapolations enable exploration of potentially
useful designs at a much faster rate than possible through manu-
facturing and testing of new synthetic molecules through trial and
error approaches. Empirical validation of extrapolated and inter-
polated molecules may be conducted through efficient design of
experiment approaches that sample configuration spaces near
potentially useful molecules isolated from the design searches.

7.2 Basis for Human-in-the-Loop Design. The D; imple-
mentation in this paper is primarily automated within each phase,
but there is no automated passing of information across phases,
which necessitates a human designer-in-the-loop. Including a
human designer-in-the-loop has great potential for guiding nonlin-
ear decision making across the methodological framework, since
it may be difficult to automate nonlinear traversal of D3 phases.
For instance, if a modeling hypothesis in the Describe phase does
not correspond to empirical data from the Discover phase, a
human is likely required to generate new hypotheses or experi-
ments by utilizing information outside of the formalized computa-
tional system. Human designers-in-the-loop should have
reasoning abilities representative of common core processes from
both science and design perspectives [29], which require deduc-
tive, inductive, and abductive decision making.

There are two primary aspects of the D3 implementation
informed by our previous cognitive studies. First, agent-based
simulations were utilized because they can promote human rea-
soning of complex multilevel relationships that may directly
improve design decision-making performance [18]. These agent-
based simulations are representable in a structure—behavior—
function framework that can promote human reasoning for design
problems, especially for complex systems [15,22].

Second, the number of variables to describe and assess each
biosystem block is informed by design decision-making experi-
ments where humans were demonstrated to effectively make
design decisions on similar representations [17,18]. The use of
cognitive findings in the D5 approach promotes the possibility of a
designer interpreting findings from the computational search and
improving them effectively. It also enables human designers to
bring in information outside of the formalized computational sys-
tem to make decisions. Some decisions may be obvious to a
human designer but difficult to automate computationally, such as
introducing a new unique myosin design to a biolibrary when a
particular functional requirement is difficult to fulfill.

7.3 Development of Biolibraries. The development of bioli-
braries is an important step toward realizing a standardized reposi-
tory of biological parts for bio-based products [30-32]. Biological
repositories typically consider biochemically oriented parts; how-
ever, this study demonstrates the potential for building reposito-
ries of mechanically oriented motor proteins. Results from the
Develop phase suggest that biolibraries with synthetic isoforms
are more robust than those with natural isoforms, where robust-
ness refers to a biolibrary’s potential for enabling the configura-
tion of a diverse set of myosin nanotechnologies. However, these
results are limited due to only a couple of natural myosins being
considered in comparison to the vast number of designable syn-
thetic molecules considered. Further analysis of trade-offs in using
natural or synthetic myosins should consider a larger set of natural
myosins, a combination of both natural and synthetic myosins in a
single biolibrary, and the cost of manufacturing and maintaining
natural and/or synthetic isoforms.

The robustness of a biolibrary was also assessed when biosys-
tem blocks were constrained to a particular volume, thus only dif-
ferences in the types of myosins and not their number in the
system are considered as design variables. The restriction of bio-
system block size is representative of volume-constrained prod-
ucts such as myosin nano-actuators that may not exceed a
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particular length. It was found that more options in myosins in the
biolibrary contribute to higher functioning across all biosystem
blocks, which suggests the need for a diversity of myosin designs
for volume-constrained product applications. Further exploration
of potential products constructed from myosins could provide
constraints and design scenarios that highlight other considera-
tions for developing robust myosin biolibraries.

7.4 Broader Applicability of D3 Methodology. The Dj
Methodology utilizes phases of empirical discovery, analytical
description, and technological development poised to aid new
product creation, especially in bio-based design applications
where scientific experiments are required. The implementation of
the methodology demonstrates its feasibility in the myosin domain
and enables discussion concerning its use for further design appli-
cations. The Dj framework is best utilized for designing new tech-
nologies where a phenomenon is already known to exist, and
further empirical discoveries can promote understanding for engi-
neering design and analysis. Although other bio-based design
applications may require different specifics in computational tools
utilized, the framework as a whole provides a basis for logically
connecting essential processes in the research and development of
new products.

In this paper, the methodology’s implementation directly con-
tributed to the basis of a human-in-the-loop approach for design-
ing myosin biolibraries. Additionally, it provides a basis for
assessing performance trade-offs in early myosin technology
design, which is essential for selecting an appropriate number and
type of myosins to manufacture and maintain. By identifying the
myosin biolibrary design problem initially, Discover and Describe
phases were driven toward results that aided design searches in
the Develop phases. Without such a framework, new scientific
experiments may explore potentially interesting spaces for gener-
ating knowledge of a system but provide little relevant informa-
tion for design decision making.

The D3 Methodology potentially has broad applicability to
other applications, since science and design are inherently
domain-independent processes in addition to the generic steps of
empirical discovery, analytical description, and technological de-
velopment. The framework provides a basis for embedding spe-
cific tools of a design domain in each phase, while suggesting
critical inputs and outputs for communication across phases. In
bio-based design, it is likely that specific computational tools will
differ, such as using a variety of coarse graining approaches for
model evaluations [67]. Differences in models could influence the
optimal representation of a system for human-in-the-loop design
approaches that are further investigated with human studies. There
are a number of other motor proteins beyond myosin relevant for
investigation with similar experiments and models [19]. Design-
ing systems with these motor proteins could offer a practical first
step for testing the methodology’s feasibility in further bio-based
applications for products with functions such as sensing, actuat-
ing, and transporting at a molecular scale [47].

8 Conclusion

The D; Methodology proposed and implemented in this paper
integrates phases of empirical discovery, analytical description,
and technological development to bridge science and design per-
spectives for configuring bio-based products. The methodology is
set up for humans to guide computational approaches, which
forms the basis of a human-in-the-loop design approach that is
well suited for complex systems design. Agent-based simulations
were used to model biosystems since they promote human under-
standing of complex systems and are adaptable to new rule sets
for modeling biological phenomenon. The D3 Methodology uses
computational processes to search design spaces that are too com-
plex for humans to traverse initially and finds individual designs
with a number of variables suitable for high-level human decision
making.
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Optimization results from the final Develop phase suggest that
using synthetic biological parts in designed products is advanta-
geous, in comparison to only using naturally existing biological
parts. These findings suggest the need for new scientific studies to
characterize synthetic biological parts, thus highlighting science
and design’s reciprocal relationship. The successful implementa-
tion of each phase suggests that the D; Methodology is potentially
useful for facilitating science and design endeavors and promoting
the rate that scientifically investigated systems become designed
technologies.
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