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Abstract Complex systems are challenging to understand

and design, and even more so when considering nanoscale

reasoning. This paper introduces a synergistic cognitive and

agent-based methodology for deriving effective strategies for

human searches in optimization design tasks. The method

consists of conducting cognitive studies to determine effective

human search approaches, rapidly testing algorithmic varia-

tions of human strategies using software agent automation, and

finally providing the highly effective agent-refined strategies

to humans. The methodology was implemented by developing

a graphical user interface (GUI) of myosin biomotors and

conducting a baseline cognitive study to determine how users

effectively search for optimal biosystem designs. The best

human designers typically searched local to their current best

solution, utilized univariate searches, and may have learned

and applied parametric knowledge. These trends informed

rule-based agent strategies, and testing variations of rules re-

sulted in the discovery of highly effective strategies using

initial random searches, univariate searches to learn parameter

relationships, and greedy local searches to apply knowledge.

The GUI was modified to aid users in implementing two of the

highest performing agent strategies in a final cognitive study.

These users provided with the agent-refined strategy per-

formed better than users with no provided strategy during the

baseline cognitive study. When agents and users were pro-

vided myosin domain knowledge prior to searching, conver-

gence on high-quality designs occurred earlier, which suggests

that even experts in the domain could benefit from the agent-

derived strategies. These findings demonstrate the power of

synergistic human- and agent-based approaches, in which

cognitive-based findings can reveal strategies that are refined

by agents that generate search strategies for greatly improved

user performance. The synergistic methodology extends be-

yond nano-based applications and could generally aid de-

signers in discovering effective decision-making approaches

across a broad range of domains.
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Nano � Complex

1 Introduction

Complex systems present challenges for engineering design

in many domains of application (Ottino 2004), especially

when considering the difficulties human users have in un-

derstanding and applying knowledge concerning these sys-

tems (Chi et al. 2012; Hmelo-Silver et al. 2007). In this paper,

our goal was to develop a method for finding effective

strategies for human traversal of complex system design

spaces. This method consists of using graphical user inter-

faces (GUIs) to facilitate synergistic cognitive (Kuhn et al.

2008) and agent-based (Landry and Cagan 2011) approaches

of discovering and refining strategies for searching complex

system design spaces. This synergistic human-agent ap-

proach is promising because cognitive studies can provide a

starting point for identifying how users initially approach

complex system design, and then software agents can rapidly

test variations of strategies inspired by successful user

searches to find more effective search approaches.

Complex systems are particularly challenging to design

because (1) complex systems consist of many interacting

parts across multiple scales of space and time and (2)
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complex systems often exhibit counterintuitive emergent

behavior (Guckenheimer and Ottino 2008). One domain

that exemplifies both of these criteria is nanoscale biome-

chanical system design (Egan et al. 2013a), such as the

design of synthetic muscle tissue (Bach et al. 2004) and

nano-actuators (Neiman and Varghese 2011) that incor-

porate myosin biomotors (Fig. 1). Design of these myosin-

based systems is particularly challenging because there are

many design variables that influence emergent system

performance, with changes to each nanoscale design vari-

able having multiple causal effects on nano- and system-

level performance that are often nonlinear (Egan et al.

2013a).

Myosin systems consist of individual myosin proteins

that stochastically attach to actin filaments and exert

propulsive force (a video describing how myosins work

with a supporting animation is available at http://youtu.be/

kLX-0Zdizk8). Each myosin utilizes the energy of one

adenosine triphosphate (ATP) molecule per attachment

cycle. Myosin systems are particularly counterintuitive

because individual myosin mechanics and chemistry are

coupled with the behavior of the system as a whole. In

muscles, for example, as tension grows and increases the

load on each myosin, the myosins handle the greater load

while utilizing less energy because they interact with

actin filaments at a lower rate. Although removing myo-

sins from a system will reduce its energy consumption,

which generally leads to greater efficiency, a minimum

energy threshold must be satisfied or the system will

dissociate and completely cease functioning (Harada et al.

1990). Many parameters in myosin design are coupled to

the same outputs (increases in myosin lever arm length,

attachment rate, and detachment rate can all alter ATP

use and required energy thresholds nonlinearly), which

suggests these systems could be difficult for designers to

search effectively, even when only a few parameters are

considered.

Our goal was to aid designers in handling these non-ob-

vious coupled relationships by facilitating their ability to

effectively manipulate design variables when configuring

complex systems. Our first step was to measure human

search effectiveness by developing a GUI that tracks human

searches of myosin design spaces that are presented as

nonlinear programming (NLP) optimization problems. NLP

tasks are well suited for the myosin problems because they

enable a simple representation of constraints and an objec-

tive function that enables humans to search an otherwise

complicated optimization problem. Additionally, they are

solvable by many traditional algorithmic engineering search

approaches (Belegundu and Chandrupatla 2011). When

these tasks are solved by a user, the user is expected to search

the design space for a configuration that best fulfills a design

goal without violating any constraints, such as increasing the

filament velocity of a system without exceeding a maximum

amount of ATP utilized by the system. These considerations

make each NLP task meaningful and tied to real-world issues

and trade-offs. The NLP representation approach is also well

suited for cognitive studies because it enables tuning the

difficulties of these problems through adding multiple con-

straints to a problem statement, or changing the number of

relevant outputs to consider.

An essential aspect of our approach is proposing and

identifying effective user search strategies, which can be

informed by engineering optimization approaches and

cognitive studies. For instance, in cognitive investigations

of human design, it has been suggested that humans are

limited by their cognitive capacity, meaning search deci-

sions should require low effort (Hirschi and Frey 2002) and

could be facilitated by simply making small changes to an

existing design. Such an approach is also supported from

an engineering standpoint, because many search strategies

use information based on the current best known solution,

such as extended pattern search (Aladahalli et al. 2007).

Similarly, univariate decision-making processes (Chen and

Klahr 1999) are often effective for humans because they

facilitate scientific reasoning for learning how inputs affect

outputs in isolation, while also being beneficial from an

engineering perspective because they reduce the effects of

parameter coupling on searches. A final cognitive-based

approach could leverage human learning of parametric

relationships using short-term memory (Hirschi and Frey

2002), thus allowing users to apply that knowledge toward

a better solution from an engineering perspective. These

proposed strategies inspired by cognitive and engineering

search approaches are summarized in Table 1. They rep-

resent only a small subset of the many strategies our syn-

ergistic human-agent approach could investigate, but serve

as a starting point for testing the methodology in this paper.

Fig. 1 Schematics of

a synthetic muscle and b nano-

actuator technologies. An

additional explanation and

animation of myosins presented

via the GUI are available at

http://youtu.be/kLX-0Zdizk8
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Our approach in this paper for developing and testing a

human-agent synergistic methodology is to first have many

human designers search timed design tasks with the GUI.

These searches are then categorized according to user

search success, and the trends are identified using Table 1

approaches as a starting point to discover the best human

search approaches. These best human approaches are then

used to inform strategies automated by computational

agents that solve the same tasks as users. Once varied

strategies are attempted by agents, their best found strate-

gies are provided to human designers. Agents are useful at

this step because they can explore the benefits of each

strategy faster and more consistently than is accomplish-

able with further cognitive studies. A symbiotic relation-

ship among human designers and computational agents

emerges in this approach, as the initial trends from user

results plant the seeds for deriving strategies that are im-

plemented by agents. When the most successful agent

strategy is returned to users, it is a highly effective algo-

rithmic strategy that remains consistent with how the

highest performing users initially approached the problem.

These highly effective strategies refined through synergis-

tic human-agent approaches should prove extendible to

other complex systems, and the synergistic methodology as

a whole could help in discovering helpful human decision-

making strategies in a wide variety of applications.

2 Background

Relevant background is presented, which informs the de-

velopment and testing of our synergistic human-agent

methodology and includes an overview of cognitive pro-

cesses in complex system design, GUIs, engineering opti-

mization, and agent-based design approaches.

2.1 Cognitive processes in complex system design

Cognitive studies have demonstrated that it is difficult for

people to understand the causal mechanisms in complex

systems (Hmelo-Silver et al. 2007), and that experts reason

about complex system interactions differently than novices.

Such considerations of novices and experts have been in-

vestigated in engineering contexts and demonstrated that

novices can perform similar to experts with minimal

training before problem solving (Wolf et al. 2011), which

suggests it would be possible to provide novice users in our

studies with information that enables them to simulate

experts in the domain. Learning complex systems has been

investigated with software tools for manipulating natural

biological systems that operated primarily at the macro-

scale, which was demonstrated to improve user under-

standing (Vattam et al. 2011). These findings suggest that it

is possible for users to learn while using software tools,

which can enable them to learn and apply information

during the problem-solving process, and that learning is

even possible in unfamiliar biological domains.

It is also important to aid users in forming effective

decisions when changing and evaluating designs. Many

cognitive studies have looked into the most beneficial way

for users to search for solutions in quantitative problems

(Chen and Klahr 1999) and found that univariate ap-

proaches to manipulating inputs are useful in developing

scientific reasoning skills and could extend to design. Such

techniques are useful for informing strategies for human

and agent use. Past studies have shown that users can have

difficulties in solving parametric design problems when as

little as three design variables are coupled to performance

outputs (Hirschi and Frey 2002), which suggests that hu-

mans may benefit from aid in even simple myosin design

tasks. These findings provide a basis for presenting design

tasks to users that only have a few design inputs and out-

puts, and to ensure that each input can be changed inde-

pendently of one another, such that users may utilize

univariate searches.

2.2 Graphical user interfaces for design

A variety of tools exist for modeling molecular scale nat-

ural and synthetic biological systems, with a few examples

Table 1 Cognitive-based search approaches

Proposed cognitive-based search approaches

Search approach Human reasoning process Cognitive basis Engineering basis

Compare to Best New designs are configured that are similar to

the previously best known design

Low cognitive load Incremental improvements

in design quality

Univariate One design variable is manipulated at a time Facilitates scientific reasoning Mitigates effects of

parameter couplings

Learn and Apply Parametric relationships learned during the

search process are applied toward finding

better designs

Correlations are stored in

short-term memory

Directs search process

toward an optimum
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being TinkerCell (Chandra et al. 2009) for considering

components inside cells, an agent-based biochemical re-

action simulator NFSim (Michael et al. 2011), and Gene

designer (Villalobos et al. 2006), which is a visual design

tool for de novo gene configurations. These tools demon-

strate the feasibility of building user interfaces for de-

signing biological systems, but focus heavily on

biochemical approaches, whereas myosin systems are

mechanochemical and may require new representation

approaches. The multiple parameters and causal influences

in the myosin domain suggest the need for multi-dimen-

sional data visualization techniques (Zhang et al. 2012). An

effective approach found by a past engineering study si-

multaneously presented many relevant inputs and outputs

for designs across a series of plots (Wolf et al. 2011),

which is a well-suited approach for representing the mul-

tiple inputs/outputs in myosin NLP optimization tasks. It is

also possible to build a GUI that enables its extension to

many different systems, such as past GUIs that have been

beneficial for I-beam, desk lamp, aircraft wing, and

manufacturing system designs with minor modifications

(Simpson et al. 2007b).

Another important consideration is that the GUI fa-

cilitates human approaches to searching design spaces, with

two concerns being the timeliness of feedback provided and

also how users manipulate designs. A research study on

multimedia tools in virtual reality demonstrated the nega-

tive effects of information lags in interactive simulations

(Viciana-Abad et al. 2011). Feedback delays have also been

studied in an engineering context for designing multiple

systems, with one example being I-beam optimization

(Simpson et al. 2007a). The addition of real-time feedback

generally improves user interaction with a GUI and can be

used as a basis for assessing the helpfulness of information

provided by the GUI. The manipulation of feedback delays

simulates design scenarios in which rapid outcome infor-

mation is not readily available to a designer (Pretz 2008),

such as in performing wet-lab experiments or computa-

tionally expensive simulations. Such expensive simulations

have been explored in the past specifically for designing in

the myosin domain (Egan et al. 2013a) and are capable of

promoting insights that are not obtainable through faster

evaluation methods. Thus, initially exploring such scenarios

of delayed feedback can validate that a GUI is providing

information that is useful for the design process.

2.3 Engineering optimization

There are many different approaches to searching design

spaces (Belegundu and Chandrupatla 2011), and the most

well-suited approach to use depends on the type of space

being searched. Search strategies for complex systems can

range from deterministic approaches that tend to focus on

finding local solutions to stochastic approaches that widely

search a design space (DuPont and Cagan 2012). There-

fore, in large search spaces with many local optima, an

algorithm with stochastic properties is essential. However,

the stochastic algorithms come at a cost of being more

computationally demanding in terms of function evaluation

count because they search a broader range of candidate

designs. In complex search spaces where the global opti-

mum is highly difficult to isolate, heuristic approaches are

often used to find high-performing designs; a recent

adaptive stochastic approach consisted of software agents

using genetic search algorithm heuristics to effectively

traverse a large search space (Landry and Cagan 2011).

Hybrid approaches are also highly effective and can utilize

stochastic searches to explore a broad portion of a design

space, while utilizing deterministic searches to pinpoint

optimal designs once candidate starting locations are

found, which is similar to the approach utilized in

simulated annealing (Shea et al. 1997).

Another successful hybrid approach that combines

stochastic and deterministic searches is the extended pat-

tern search (Aladahalli et al. 2007), which has recently

been deployed for searching complex design spaces for

optimal wind farm layouts (DuPont and Cagan 2012). In

the extended pattern search, the search space of a layout

problem is traversed by first stochastically placing com-

ponents in particular locations. Component locations are

then optimized through deterministic local searches by

conducting univariate manipulations of component posi-

tions and only keeping moves that result in global im-

provement. To avoid the early convergence on low-

performing optima caused by reliance on deterministic

position adjustments, additional iterations are conducted

through stochastically popping the locations of some

components to a new space and applying the deterministic

placement again. Through iterations of deterministic and

stochastic search processes, the algorithm maintains a high

degree of exploration while also converging on high-

quality designs. Such findings suggest that hybrid strategies

are a powerful approach that could be utilized in human-

agent searches, and that univariate changes to designs are

effective even in complex design scenarios.

2.4 Agent-based computational design

Software agents are computational objects that have varied

capabilities in perceiving and manipulating virtual envi-

ronments, storing information, and automating the process

of searching a design space using rule-based approaches.

Past software agent approaches in engineering design have

included implementations with agents mimicking design

teams (Olson et al. 2009), agents evolving in a manner

similar to genetic algorithms (Hanna and Cagan 2009), and
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expert agents providing suggestions as they learn user

preferences (Schiaffino and Amandi 2009). In these appli-

cations, agents are independent and often autonomous

computational objects that sense information from their

environment in the form of assessing design representations.

Through using programmed rules and stored memory, they

make effective decisions toward reaching a design goal.

In the A-design approach, populations of agents each

have their own independent design goals such as configur-

ing, sorting, or diversifying designs. Through an iterative

process, the population of agents searches a design space

(Campbell et al. 1999). The A-design agents were also

developed to reason about the functional requirements of a

design and fulfill its function by creating component con-

figurations in the domain of electromechanical devices.

Later implementations utilized cognitive-based engineering

approaches to improve agent performance through

simulated chunking of information, similar to human ex-

perts. These findings suggest that cognitive-based strategies

are useful in programming successful agent approaches.

Another successful approach was inspired through

evolutionary algorithms, where individual agents possessed

varied strategies and the population of agents evolved

throughout the solution process to optimize their approach

for the problem at hand (Landry and Cagan 2011). In this

case, agents had no intelligence and mimicked binary

string operations from genetic algorithms. The evolution of

the agents aimed to configure an optimal search strategy for

deployment during each phase of a search process. Find-

ings from this approach are suggestive of the need to

consider many different agent strategies in finding an op-

timal search approach, and that optimal agent strategies

differ based on problem types. Other studies have incor-

porated learning into computational agent evolution

(Buczak et al. 2005), which suggests it is possible to

combine cognitive-based learning approaches in refining

agent search strategies—a pivotal aspect of our synergistic

agent-human methodology.

3 Methods: design tasks, GUI, and pilot study

Before initiating the synergistic human-agent method-

ology, a process must be developed and tested for re-

trieving and analyzing human search data. This process

consists of generating a set of design tasks, building a GUI

for collecting human search data, and then testing it with

users and assessing the results.

3.1 Design tasks

Design tasks are NLP optimization problem statements

with goals and constraints that represent myosin-based

technological requirements. For instance, one task may

have a goal of highest filament velocity, in which case a

user or agent would be required to manipulate myosin

design variables in order to achieve the highest velocity

possible. If a problem is constrained, such as having a

maximum allowable energy, the user or agent would have

to search for a system that performs the best while still

meeting the constraint—designs that do not meet con-

straints are considered invalid. Each design task only has

one goal performance output that may or may not be

constrained and represents the objective function, and a

second performance output that may also be constrained.

Through these design task considerations, the GUI was

developed to enable users to manipulate myosin design

variables and view the relevant outputs of a design task.

3.2 Design modules and their integration to form

a scene

Our visual design tool consists of interactive modules that

aid the user for NLP optimization tasks with a single ob-

jective function goal. These modular tools are integrated to

form interactive tutorial and design tasks scenes for a user

that are presented sequentially (video demonstration at

http://youtu.be/XOi3n-XwAXQ). The software tool was

implemented in Java with the JavaFX library supporting

the graphics and interface and is presented in Fig. 2, which

demonstrates each module of a design scene for a task with

four design inputs and two performance outputs.

In the figure, the task description presents information

about the design goal and constraints. The design input

sliders enable a user to alter values of four independent

myosin system design variables and evaluate the current

design with a button press (these four myosin design

variables are always present regardless of the number of

performance outputs). As myosin values are altered, new

visualizations of the system are rendered: (1) a myosin’s

lever arm length is represented by the height of the myosin

graphic, (2) a myosin’s attachment rate is represented by

the size of the ‘‘up’’ arrow to the left of the myosin, (3) a

myosin’s detachment rate is represented by the size of the

‘‘down’’ arrow to the right of the myosin, and (4) the

number of myosins is proportionally reflected by the

number of myosins in the system rendering graphic. The

maximum values for each input are a myosin lever arm

length l of 20 nm, myosin attachment rate kon of 4000 s-1,

myosin detachment rate koff of 2000 s-1, and a maximum

number of myosins Nmyo of 100. The lever arm, attachment

rate, and detachment rate are represented in a non-dimen-

sionalized quantity to avoid overly confusing units and

values for users who are unfamiliar with the system. These

variables are weighted from 0.2 to 1.0 of the parameter’s

maximum value according to the five possible input
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possibilities tied to each slider. The sliders were tuned such

that a user increasing a slider input linearly resulted in its

corresponding myosin design input increasing linearly

(e.g., if a slider was at its lowest value of 0.2 and then

moved to its value of 0.8, and the corresponding myosin

input was lever arm length, it would increase from 4 to

16 nm). Because there are four sliders and five input po-

sitions for each slider, 625 design possibilities exist. The

resulting design space is quite difficult for users to navigate

when considering the counterintuitive parameter interac-

tions present and limited time a user has to search the space

during our timed user studies. The mathematical myosin

model used in this study has been empirically validated for

each of these myosin design variables (Egan et al. 2013a)

and is described in section ‘‘Myosin mathematical model-

ing’’ in Appendix. The chosen ranges for myosin design

inputs are informed from empirical studies in the myosin

domain (Howard 2001).

The tabulated results in Fig. 2 display the input pa-

rameters used for each design evaluation and the outputs for

how that design performs once it is evaluated. Each column

represents a different design metric and from left to right are

‘‘Eval #’’ that represents the order a design was evaluated,

‘‘Chart Key’’ that displays symbols for the plotted solution,

‘‘Lever Arm,’’ ‘‘Attach Rate,’’ ‘‘Detach Rate,’’ and ‘‘# of

Myosins’’ columns that represent their respective design

inputs, and the ‘‘Goal’’ column that has values of the ob-

jective function and details about the constraint (e.g.,

‘‘Higher is Better, can’t be too High’’ in Fig. 2). If there is a

second output parameter, it appears in the column to the right

of the ‘‘Goal’’ column. Each row represents a single design

evaluation with the exception of the top row being a header

and the bottom row housing sort buttons. Sort buttons always

move higher value designs with respect to the sorted pa-

rameter of interest to the top, with the exception of the ‘‘Chart

Key’’ column that has no numeric values. The ‘‘Chart Key’’

column is always sorted with better designs appearing higher

with respect to the design goal (i.e., maximization problems

have highest values at the top, and minimization problems

have the lowest values at the top; designs that violate con-

straints are always at the bottom). In the case of two designs

having the same value for a sorting metric, a secondary sort is

done with respect to the goal output value.

The plotted goal outputs in Fig. 2 each have one chart

per input parameter designated as x-axes and a common

output parameter for y-axes; the y-axis output parameter is

different for the two sets of plots. There are two sets of

charts only if there is a secondary output being considered

for a task, otherwise only the goal plots are displayed. For a

single design evaluation, there is one y-value correspond-

ing to four different x-values that appear once on each set

of four (or eight) charts. At the top of the plots is a re-

minder of the goal for a given design task. The charts also

have red or gray areas depending on the constraints for a

task—red areas represent the infeasible design space.

When plotted, outputs for feasible designs appear as cir-

cles, while infeasible designs appear as crosses. A com-

plete design scene consists of the interface modules as

rendered in Fig. 2 passing information among one another,

as well as a timer that limits the duration a user has to

evaluate all of their designs before the GUI automatically

moves to the next scene.

Fig. 2 Labeled screen capture of design scene integrating all software tool modules (color figure online)
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3.3 Pilot cognitive study

A pilot study was conducted to assess the usefulness of

the design tool, how users generally approach the GUI

tasks, and for developing data analysis methods. In the

pilot study, users solved tasks with immediate or delayed

feedback from the GUI (in delayed feedback condition,

users received no performance output until their eighth

evaluation). This approach is similar to a previous ap-

proach that investigated how delays in outputting

simulation data affect human search performance (Simp-

son et al. 2007a). In the pilot study, users were provided a

design tutorial and then solved six design tasks that had

three different difficulty levels. Difficulty was based on

how many outputs and constraints were present in the task

statement, which correlated with the proportion of high-

performance designs near the global optimum. Feedback

was manipulated in the pilot study through a within-

subject variation of conditions, where each user solved a

task of a given type with real-time feedback and then

delayed feedback. Influences of feedback were determined

by aggregating all user scores for a given feedback con-

dition and comparing them across problem types. Details

on these tasks and how they were generated to balance

difficulty are available in section ‘‘Design task generation

and difficulty’’ in Appendix.

Pilot study results demonstrated that when users re-

ceived immediate feedback with our myosin design tool,

they found higher-quality designs than when their feedback

was delayed, which suggests that the output provided by

the tool is helpful during users’ search process. Real-time

feedback provided the greatest benefit on the most difficult

task (i.e., the difference in scores among users solving with

real-time versus delayed feedback was greatest on the most

difficult task) and suggests that feedback from previous

evaluations is increasingly more important as problem

complexity grows.

Information provided by the GUI also influenced user

search approaches; users with real-time feedback searched

more closely to their previous best design, which correlated

with more global design improvements, and supports the

cognitive basis for the Compare to Best search approach in

Table 1. The experimental design of the pilot study coun-

terbalanced tasks such that half of the participants began

with the easiest tasks and half began with the hardest

tasks—participants did not improve on later problems. This

result is important in designing future cognitive studies

because it suggests that task ordering and learning across

tasks is negligible, as long as users are presented diverse

tasks similar to those of the pilot study. Additionally, it

demonstrates that adequate training was provided during

the software tutorial prior to the first task, since there was

not a significant difference in user performance for a

particular task depending on when they solved it during

their problem set.

More details on the results of the pilot cognitive study

are available in section ‘‘Pilot cognitive study with real-

time and delayed feedback’’ in Appendix, which also

demonstrates that human designers found higher-quality

designs on tasks that were expected to be easier based on

the number of outputs and constraints included in the task

statement. However, these definitions of problem difficul-

ties do not take into consideration that varied strategies

may have more or less success depending on the nature of

the space (e.g., there are many local optima, the number of

feasible designs is small). Therefore, it is important to in-

vestigate the influence of strategies on successful traversal

of a search space, which is considered throughout the

synergistic human-agent methodology. Through creating

and testing the myosin GUI, the pilot study results suggest

that user search approaches can be collected and assessed

that are indicative of user search approaches, thus provid-

ing a basis for collecting data in the first phase of our

human-agent method.

4 Baseline cognitive study: identifying successful search

trends

A baseline cognitive study was conducted to initiate our

synergistic human-agent methodology by collecting data

from many participants solving tasks with real-time feed-

back, and determining whether these trends correspond to

the proposed cognitive-based search approaches in

Table 1. This baseline cognitive study also provides an

assessment of how users perform when not provided a

formal strategy, which can serve as a basis of comparison

once users are provided agent-refined strategies in the final

phase of the methodology.

4.1 Baseline cognitive study protocol

Thirty-one participants were recruited to solve three design

tasks of varied difficulty, and the goal of the baseline study

was to have a large number of users solving each task, so

that successful trends could be identified and compared

with proposed Table 1 cognitive-based search approaches.

The participants were all mechanical engineering under-

graduates in a senior design course at Carnegie Mellon

University and were compensated with course credit. The

myosin design tasks given to each user are shown in

Table 2 and were tuned from the pilot cognitive study

(section ‘‘Pilot cognitive study with real-time and delayed

feedback’’ in Appendix) to ensure that an initial guess of all

inputs set to their median value resulted in a failed design

(this is because users selected a median initial guess often,
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and depending on the task it could result in a high-per-

forming feasible solution immediately). Tasks were tuned

in difficulty according to the section ‘‘Design task gen-

eration and difficulty’’ in Appendix protocol, which re-

quires considerations of the number of constraints on a

design space in addition to the number of valid designs that

meet constraints.

In Table 2, the easiest task has one goal output (repre-

senting its objective function in the myosin domain) and

one constraint on the same output (limiting the maximum

output, a design can have while remaining feasible). Be-

cause the task has one goal output, and a constraint on that

goal output, it is referred to as a ‘‘1-output-1-constraint’’

task, and task types with more outputs and constraints

follow a similar nomenclature pattern. Each task was

limited to 4 min maximum search time, with users having

to input and evaluate ten designs within that limit. All

participants were able to complete all ten design eval-

uations within the time limit.

For the purposes of this study, users were told within a

software tutorial that they were designing myosin tech-

nologies. But in the actual design tasks, the myosin infor-

mation was replaced with generic variable names (e.g.,

‘‘Input A’’) in order to focus on studying the user strategies

without the influence of domain information (video of

modified GUI available at http://youtu.be/-N–Jopb4DA).

Outputs were also renamed with generic variable names

(e.g., ‘‘output B’’). The pairing of each myosin design

variable and each generic name was changed for each task,

to minimize user familiarity with how each input affected

outputs. More generally, in this cognitive study, we are

investigating how humans navigate ‘‘generic’’ complex

spaces with black box simulators and how to best provide

strategic guidance as they search the nonlinear and highly

coupled input–output space; therefore forming an approach

that is tied to the myosin domain, yet the strategies de-

veloped could apply broadly to many different nonlinear

complex system domains.

4.2 Tabulating user search behaviors

All 31 users solved the design tasks under the same real-

time feedback conditions, and information about users’

designs and evaluations was recorded throughout each

user’s entire search process. The post-processing of

recorded data to find user search trends was informed by

the pilot study and the proposed cognitive-based ap-

proaches in Table 1, such as determining how often users

utilized univariate searches. All information and subse-

quent calculations to interpret a user’s search process are

presented in Table 3, which will be used as a reference

throughout this section and reflects the recorded data of one

user solving the 2-outputs-2-constraints task. The post-

processing calculations in Table 3 were unknown to the

user; users were only presented information via the GUI as

noted in Sect. 3.1.

When a design was evaluated, its objective function

value was displayed to the user as its calculated value

corresponding to the myosin domain, but in our table we

assessed designs via their relative objective functions

compared with the global optimum for the task. The global

optimum for a problem was always 1 and all designs worse

than the global optimum were given a score between 0 and

1 as a proportion of the design’s objective function and that

of the global optimum (the reciprocal was used for

minimization tasks). For instance, if a user had a design

evaluated at 2 lm/s, and the global maximum was 4 lm/s,

then the user would be presented 2 lm/s and the calculated

relative objective function for Table 3 is 0.5 (no units). If

an evaluation violated a constraint, it was given a relative

objective function score of zero. By scoring all tasks ac-

cording to these scales, comparisons could be made across

tasks based on relative scores, such that a higher score

always indicates a better design regardless of whether the

task requires a minimization or maximization.

Although all failed designs were given relative objective

functions of zero, and the GUI informed users that all

failed designs were equally bad, our post-processing cal-

culations require identifying a user’s best design among all

failed designs if the user has not yet input a valid design.

This was calculated through determining how badly a de-

sign violated constraints and assessed for each constraint

separately. For instance, if a user’s evaluated design had a

filament velocity of 5.5 lm/s, and the secondary constraint

for the task stated that filament velocity had to be\4.0 lm/

s, then the secondary constraint violation would be given a

value of 1.5 in the table. The magnitude of a constraint

violation was always calculated as an absolute value, such

Table 2 Three NLP design tasks for users to solve in the baseline cognitive study

Design tasks for baseline cognitive study

Design goal Goal constraint Secondary constraint Valid designs (%) Task type

Highest avg # of attached myos B5.7 (Natt) None *50 1-Output-1-constraint

Highest filament velocity None System energy use B2.3 (ATP/ms) *50 2-Outputs-1-constraint

Lowest avg # of attached myos B5.4 (Natt) Filament velocity C3.2 (lm/s) *25 2-Outputs-2-constraints
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that a value closer to zero is always closer to satisfying a

constraint, regardless of it being an upper or lower bound.

Users could have utilized such information during their

design process through assessing how badly failed designs

violated constraints through viewing the charts or tabulated

output.

A user’s best design was then determined as the one with

the highest relative objective function, or if no designs were

within constraints, the best design was the one that violated

the secondary constraint the least. If the secondary constraint

was not violated, or did not exist, the constraint on the goal

output was used as a basis of comparison. The secondary

constraint was considered more important in limiting the

best design because all tasks were tuned such that the sec-

ondary constraint was actively constraining the global op-

timum (section ‘‘Design task generation and difficulty’’ in

Appendix). The user’s best design was identified during

each point in the search process, therefore enabling pairwise

comparisons of a user’s current evaluation against their

previous best design for each point in the search process.

Because each evaluated design was input via four myosin

variables with five possible values (details noted in

Sect. 3.2), each of these input variables were given a value

of 1–5 in the table. The difference among inputs from a

user’s current evaluation and previous best design was

calculated through determining the absolute value of the

difference between each variable among the two sets of

inputs, and then summing all of the differences. Finding this

distance can indicate whether a user was searching near

their previous best design and reflects the Compare to Best

approach in Table 1. Determining the number of variables

different from the best design configuration required pair-

wise comparisons of each myosin input for the current

evaluation against that of the previous best design and

summing the total, therefore leading to a value of 4 or

lower.

The next set of post-processed data was based on cog-

nitive considerations of users learning and applying

knowledge within a search process—higher or lower values

of these variables are not necessarily better or worse, but

serve as metrics for comparing the best and worst design

searches in order to find patterns in the approaches utilized

by the best human designers. We considered these calcu-

lations in the context of univariate approaches, because

they are effective in knowledge inference/scientific rea-

soning contexts (Chen and Klahr 1999; Kuhn et al. 2008),

as suggested in Table 1 by the univariate search approach.

A variable was counted as learned if it had been used in a

univariate fashion from any other past evaluation. Once a

user learned a variable, the knowledge was considered to

be retained throughout the rest of the search.

It was then calculated whether the user implemented

learned knowledge usefully in the rest of the design processT
a

b
le

3
S

ea
rc

h
d

at
a

re
co

rd
ed

fr
o

m
o

n
e

u
se

r
an

d
su

b
se

q
u

en
t

p
o

st
-p

ro
ce

ss
in

g
ca

lc
u

la
ti

o
n

s

D
es

ig
n

#
R

el
at

iv
e

o
b

je
ct

iv
e

fu
n

ct
io

n

G
o

al

co
n

st
ra

in
t

v
io

la
ti

o
n

S
ec

o
n

d
ar

y

co
n

st
ra

in
t

v
io

la
ti

o
n

D
es

ig
n

in
p

u
t

v
ar

ia
b

le
s

P
re

v
io

u
s

b
es

t
d

es
ig

n
in

p
u

t

v
ar

ia
b

le
s

In
p

u
t

D
is

ta
n

ce

fr
o

m
B

es
t

N
o

.
o

f
v

ar
ia

b
le

s

d
if

fe
re

n
t

fr
o

m

b
es

t

H
as

k
n

o
w

le
d

g
e

o
f

d
es

ig
n

v
ar

ia
b

le

A
p

p
li

ed

k
n

o
w

le
d

g
e

g
re

ed
il

y
?

L
ev

er
k o

n
k o

ff
N

m
y
o

L
ev

er
k o

n
k o

ff
N

m
y
o

L
ev

er
k o

n
k o

ff
N

m
y
o

1
0

1
.8

2
0

3
3

3
3

–
–

–
–

–
–

–
–

–
–

–

2
0

0
1

.3
5

2
5

2
1

3
3

3
3

6
4

9
9

9
9

–

3
0

1
1

.6
2

2
.1

1
2

3
1

5
3

3
3

3
5

3
9

9
9

9
0

4
0

0
.5

7
0

4
2

4
4

3
3

3
3

4
4

9
9

9
9

0

5
0

0
.8

7
0

5
2

4
4

4
2

4
4

1
1

Y
E

S
9

9
9

0

6
0

.4
1

0
0

4
1

4
4

4
2

4
4

1
1

Y
E

S
Y

E
S

9
9

0

7
0

.4
8

0
0

4
1

5
4

4
1

4
4

1
1

Y
E

S
Y

E
S

Y
E

S
9

0

8
0

.5
8

0
0

4
1

5
3

4
1

5
4

1
1

Y
E

S
Y

E
S

Y
E

S
Y

E
S

0

9
0

0
0

.8
1

4
1

5
1

4
1

5
3

1
1

Y
E

S
Y

E
S

Y
E

S
Y

E
S

1

1
0

0
.7

2
0

0
4

1
5

2
4

1
5

3
1

1
Y

E
S

Y
E

S
Y

E
S

Y
E

S
2

H
ig

h
er

re
la

ti
v

e
o

b
je

ct
iv

e
fu

n
ct

io
n

s
in

d
ic

at
e

b
et

te
r

d
es

ig
n

s

Res Eng Design

123



according to greedy search logic, which could potentially

mean a user is applying knowledge from their short-term

memory as indicated in Table 1 by the Learn and Apply

search approach. A useful univariate search was considered

an evaluation if the user implemented a univariate search

from the previous best design using a learned variable and

altered the variable in a direction that would improve its

objective function or overshoot a constraint in an attempt to

improve the objective function. If the previous best design

was in violation of constraints, users were considered to

have utilized knowledge properly if they moved a failed

design toward being valid by using a univariate search that

lessened the constraint violation (e.g., if a design violated a

constraint because its filament velocity was too high, and

decreasing lever arm was known to decrease filament ve-

locity, a correct knowledge application was counted if the

user decreased the myosin lever arm length using a uni-

variate search). In cases of a failed design for the 2-out-

puts-2-constraints tasks, assessment of proper knowledge

application was done with respect to the secondary con-

straint initially because it is considered the more important

constraint to avoid, as it limits the global optimum.

Knowledge application with respect to avoiding the goal

constraint was only considered if the best design was in-

feasible but had no secondary constraint violations.

Through tracking these relationships for each user, a basis

of comparison among user search behaviors can be con-

ducted that provides cognitive insights for how humans

effectively search complex design spaces.

4.3 Identifying successful user search trends

The tabulation of user searches is important, because it

allows for comparing user searches and aids in determining

trends that most often lead to high-quality final designs. For

each task, data was analyzed by separating user results into

three categories based on the best relative objective func-

tion found during their search; the top 25 % of searches

were placed into the Best search category, the worst 25 %

of searches were placed into the Worst search category,

and all other searches were placed in the Med (median)

search category. Because each task was assessed indepen-

dently of others, the users that produced the best searches

for one task did not necessarily produce the best searches

for other tasks. The comparisons of these three categories

for each task and other examined trends are presented in

Fig. 3.

The results in Fig. 3a shows that the searches in the Best

grouping were always of greater quality than a random

solver. The random solver was programmed to select de-

signs sequentially under the same constraints as humans

(i.e., only ten design evaluations allowed, all designs must

be unique) by randomly choosing values for each design

variable for each new evaluation. Searches in the Med

grouping were slightly better than a random solver for the

1-output-1-constraint task and comparable with the random

solver for the more difficult tasks. The searches in the worst

grouping always performed worse than the random solver.

In considering all tasks, the searches from the best group-

ing always averaged to a relative objective function of

about 0.9 or greater, and the difference between searches in

the Best and Worst grouping grew as task difficulty in-

creased. Thus, the gap between the best and the worst

searches grew with task difficulty, which is similar to the

pilot cognitive study (section ‘‘Pilot cognitive study with

real-time and delayed feedback’’ in Appendix).

The first considered post-processing trend was how far

users searched in comparison with their previous best de-

sign, which corresponds to the Compare to Best cognitive

approach in Table 1. This was calculated for each task, by

summing the Input Distance from Best value from Table 3

across all of a user’s evaluations and then averaging them

for all users in a category (same Best, Med, and Worst

categories as in Fig. 3a) and is plotted in Fig. 3b. The re-

sults show that in all tasks, the searches in the Best

grouping had lower average differences than searches in

the Worst grouping. The greatest difference between the

Best and Worst searches occurred on the most difficult

design task (2-outputs-2-constraints). The user trends were

also compared with the distances a random solver would

produce during its search. For the 2-outputs-2-constraints

task, searches in the Worst grouping varied much more

widely from their previous best design than would be ex-

pected by a random search, suggesting they may not have

had a methodical approach to searching the space or that

their approach was highly ineffective. When referring back

to Fig. 3a, the searches in the Worst grouping also had

many scores near zero in their 2-outputs-2-constraints task,

thus suggesting that when user designs were infeasible

(thus having a score of zero), users were more likely to

widely search the design space. These trends suggest that

better searches are a result of users choosing new inputs

that are similar to their previous best input, rather than

widely searching the design space.

Next, the total number of times a univariate search was

used in relation to a previous best design was summed for

each user and averaged across all users for each category in

Fig. 3c, which is indicative of the univariate search ap-

proach in Table 1. The categories of Best, Med, and Worst

still reflect the same groupings as originally created for

Fig. 3a. Results in Fig. 3c shows that for the least and most

difficult tasks, the univariate search in relation to the best

design was used much more often in successful searches

than the worst searches. For the 2-outputs-1-constraint

problem, there was not a significant difference among the

three search categories, suggesting that univariate searches
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might not be beneficial for that particular task. In all cases,

user implementation of the strategy was much higher than

was achieved by the random solver and suggests that uni-

variate searches are a deliberate cognitive-based strategy,

rather than a pattern that emerges by chance.

The final set of analyses examined whether users had

applied knowledge according to a greedy search logic once

they had learned (or at least had the opportunity to learn

based on evidence from their search process) how an input

parameter affected the output through isolating it in a uni-

variate search in relation to any previous design. This

measurement is indicative of users searching with the Learn

and Apply approach in Table 1. The number of times

knowledge was applied according to greedy search logic

rules (Sect. 4.2) was then counted and averaged for all users

within a category. This data is plotted in Fig. 3d for each task

type, using the same categories for Best, Med, and Worst.

Although Fig. 3d results show that all users appear to

have applied knowledge much more often than would be

expected through a random search, the results show a high

degree of variability across all groups. Therefore, these

observed group differences are only suggestive trends.

However, in all tasks, results show the same trends of

knowledge implementation being positively correlated

with more successful searching. This, as well as the other

two trends identified in Fig. 3b (to search near a user’s

previous best designs) and Fig. 3c (to use univariate

searches in comparison with a user’s previous best designs)

suggest that better searches are the result of deliberate

decisions in the design process. Such findings support the

notion that cognitive-based search approaches may be

highly effective in traversing complex system spaces.

Figure 3 findings, when considered with Table 1 cog-

nitive-based search approaches, can be used to develop

formal search approaches that agents can test at a much

faster rate than could be achieved through further human

studies. Three search strategies of Stochastic From Best,

Univariate From Best, and Univariate Learn and Apply

were developed through consideration of the data and are

presented in Table 4.

The strategies presented in Table 4 are specifically search

strategies, as opposed to other strategies associated with the

design process (e.g., ideation, testing.) and therefore have

specific rules. The first strategy, Stochastic From Best, was

inspired by the best designers in Fig. 3b who often selected

designs that were near their previous best design. In this

Fig. 3 Performance and trends of users separated into Best, Med, and

Worst search categories for each design task. The output trends

considered were a the mean best relative objective function, b the

mean difference between a user’s design inputs and previous best

solution, averaged over all evaluations, c the mean number of times

users implemented a univariate search strategy using their previous

best design as a point of reference for a given search, and d the mean

total times users applied knowledge. All error bars represent standard

error of the mean; significant (p \ 0.05) differences are indicated by

reported p-values on charts for comparisons among the Best and

Worst user measurements. Horizontal lines indicate random solver

results

Res Eng Design

123



strategy, a user or agent must choose their next design

through changing any number of variables as long as it is

within the maximum difference allowable between designs.

The Univariate From Best strategy was inspired by the best

designers in Fig. 3c, who often utilized univariate searches.

In this strategy, one design variable must change in relation

to the best known design for each new evaluation. The final

strategy was inspired by the trends observed in Fig. 3d in

which better searches were related to learning and applica-

tion of parameter relationships. In this strategy, a user or

agent must utilize univariate searches to learn a parametric

relationship among one input and the output(s) for a problem

and then use univariate searches to change that parameter in

an effort to improve their design using their acquired

knowledge. These rules have many variations that can be

quickly investigated with agents, which is the next major step

of our human-agent methodology.

5 Agent study: refinement of human strategies

After identifying trends in how users with the highest

search scores traversed the design space, software agents

were programmed to automate task solving by using

Table 4 strategies inspired by the best user searches.

Computational software agents were constrained to the

same rules as human designers so that the findings could be

directly compared with user solutions, and successful agent

strategies could be returned and implemented by users.

5.1 Finding effective strategies with software agents

Each software agent was a computational object that has

access to all the same information available to human de-

signers via the tabulated results table in the GUI (e.g., the

values of previous design inputs and performance outputs).

Agents searched the design space by assessing the avail-

able information and then choosing a next input that fol-

lowed a set of rules based on that agent’s preferred Table 4

strategy. Because there was no initial information available

for an agents’ first guess, each agent was given a preferred

choice in initial design (e.g., random inputs, or choosing

median design inputs). In subsequent steps, agents always

followed the rules of their preferred strategy, unless there

was no combination of design inputs that would enable

them to adhere to their strategy—in these cases, the agent

input a random design that had not yet been evaluated.

Because the agents are utilizing many stochastic search

rules for finding designs (such as choosing which design

input to vary randomly), and good strategies can lead to

poor results based on chance (or the reverse), each agent

repeatedly solved a task 2500 times, and results were ag-

gregated to generate an average result with negligible error.

The findings from the baseline cognitive study led to three

different cognitive-based search strategies, which are pre-

sented again here in the context of how agents deploy each

strategy. The rules for the Stochastic From Best strategy are

that a new design cannot have a difference larger than a

given amount (based on the agent’s preference) in compar-

ison with the previous best design, but any number of vari-

ables are allowed to change (i.e., any number of variables

could change, but the total distance across variables is

constrained using the same distance criteria as in Table 3

post-processing calculations). For the Univariate From Best

strategy, agents randomly chose a design input to change in

comparison with their previous best design.

The Univariate Learn and Apply strategy utilized a

stochastic univariate search strategy for each of the four

design inputs initially, with design variables chosen in ran-

dom order until a univariate search had been conducted once

with respect to each input variable. When a variable had been

chosen for a univariate search, an agent had an equal chance

of randomly choosing any other value for the variable other

than its current value (that did not duplicate a previously

evaluated design). The agent then applied knowledge via a

greedy local search that followed the same rules of suc-

cessful knowledge implementation by users in Sect. 4.2. To

restate those rules in the context of agents, if a design was

feasible, the agents had to make design changes that would

result in a better objective function value or overshoot it. If

the design was failed, the agent had to make design changes

that would result in a lower constraint violation.

The mean best relative objective functions found by

agents utilizing these three strategies are presented in

Fig. 4 for each of the three Table 2 tasks and are compared

with a random solver. For all agent strategies, the initial

guess was chosen randomly and the Stochastic From Best

strategy reflects a preferred distance of two from the pre-

vious best design, which is consistent with the best ap-

proach found when extensively testing all agent strategies

and their variations in section ‘‘Pilot cognitive study with

real-time and delayed feedback’’ in Appendix.

For the 1-output-1-constraint task, all strategies per-

formed better than a random solver, with the Univariate

Table 4 Agent strategies informed from user search successes

Strategy name Strategy rules

Stochastic From

Best

One or more design variables in comparison

with the best known solution are slightly

perturbed

Univariate From

Best

One design variable in comparison with the best

known solution is perturbed

Univariate Learn

and Apply

One design variable in comparison with the best

known solution is perturbed. Subsequent

perturbations are based on parameter

correlations
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Learn and Apply strategy outperforming the other two

strategies. For the 2-outputs-1-constraint task, the random

solver outperformed each of the strategies, which is con-

sistent with this task having the weakest trends in differ-

entiating the best and worst searches by users in Sect. 4.2.

In the 2-outputs-2-constraints task, the Univariate Learn

and Apply strategy produced higher-quality solutions than

all other strategies, although the other two strategies did

perform better than a random search. These results suggest

that the Univariate Learn and Apply strategy has the most

consistent performance, although another approach could

improve search performance in the 2-outputs-1-constraint

task. Because random evaluations performed well in this

space, a refined strategy could utilize a combination of

random evaluations early in the design search followed by

utilization of a directed strategy, which is similar to past

successes in combining stochastic and deterministic opti-

mization approaches (Aladahalli et al. 2007). Such a

strategy combines the exploratory nature of stochastic

searches early in the design process, followed by a directed

convergence later in the design process, thus forming a

broad search approach. This broad approach may

specifically perform well on the 2-outputs-1-constraint

tasks because it has both a large feasible design space

(50 %) and an unbounded objective function that is con-

strained by a secondary output, thus producing a design

space that would have many local optima that perform

much worse than the global optimum. Because there are

many local optima, a broad exploration is beneficial in the

search process because it facilitates the finding of strong

candidate designs before applying knowledge for conver-

gence on a final design.

5.2 Assessment of broad early search

In order to improve the search effectiveness in the 2-outputs-

1-constraint task, it was proposed that a broad search early in

the design process would provide exploration that would

facilitate the finding of the global optimum design. To assess

the most beneficial number of stochastic selections, agents

were programmed to utilize the Learn and Apply Strategy

for each Table 2 task and have a number of initial random

guesses ranging from zero (i.e., the same Learn and Apply

Strategy from previous section) to ten (effectively a random

solver) and results are presented in Fig. 5. After their initial

random guesses, all agents utilized the Learn and Apply

strategy for their remaining evaluations.

As the number of initial random evaluations increases, the

best found solution declines for the 1-output-1-constraint

and 2-outputs-2-constraints tasks, but increases initially for

2-outputs-1-constraint task before decreasing. Initial random

searches may not improve the 1-output-1-constraint task

because the objective function itself is constrained, thus

making it a bound problem, and therefore, all local optima

will be very close to the global optimum and any approach

that quickly converges on the constraint will always result in

a good solution. The 2-outputs-1-constraint task may have

benefitted from initial random searches in comparison with

the 2-outputs-2-constraints task, because the 2-outputs-1-

constraint task has twice as many designs that do not violate

any constraints (because each constraint halves the design

space given how these tasks were created, see section ‘‘De-

sign task generation and difficulty’’ in Appendix). This

means there are many more local optima that could cause

earlier convergence on a sub-par solution in the 2-variables-

1-constraint task. By contrast, the 2-outputs-2-constraints

task has more chances of random designs resulting in in-

feasible solutions, which helps direct converging algorithms

toward a high-performing feasible solution. Because there

are so few valid designs for the 2-outputs-2-constraints task,

as long as an agent finds a valid design that converges on the

active constraint, it is likely to be higher scoring than a

random design. These results suggest that optimal strategies

vary by task type, and that a robust strategy for many types of

problems could be investigated using the agents, which is

presented in the next section.

Fig. 4 Mean best relative objective function found by agents for each

task. Error for all mean agent searches is negligible. Horizontal lines

indicate random solver results

Fig. 5 Mean best relative objective function found by agents

utilizing the Univariate Learn and Apply strategy as number of

initial random evaluations is varied for each task. Error for all mean

agent searches is negligible
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5.3 Expert knowledge application and robust design

strategies

To facilitate identification of a robust design strategy, three

more tasks were generated (Table 5). More tasks are re-

quired to fully assess a strategy because one strategy could

by chance work well on a given problem type based on

initial conditions chosen, or other random chances, which

obscures generalizability. To assess whether a strategy is

robust, its performance is aggregated using all six tasks

across Tables 2 and 5. Tasks in Table 5 were tuned in dif-

ficulty according to the same rules as Table 2 tasks.

Because these strategies will be eventually returned to

users and users may have varying levels of a priori

knowledge, strategies also require assessment in terms of

how differing levels of domain knowledge affect search

quality. For instance, an expert designer may already know

all parameter relationships and could therefore bypass the

learning stages in the Univariate Learn and Apply strategy

and immediately begin applying their knowledge in a

greedy local search. However, this may further direct the

search toward early convergence, which could impede or

improve performance depending on the task. Therefore, it

is important to investigate each approach with agents to

determine how a priori and learned domain knowledge

affects performance on each task.

To investigate how the number of known parameter

relationships (referred to as increments of domain knowl-

edge) influence search quality, the Univariate Learn and

Apply strategy was conducted with different amounts of

maximum domain knowledge that could be known by an

agent. Then a new agent strategy, termed Univariate Expert

Application was developed, which reflects agents knowing

whether a design variable has a positive, negative, or no

correlation with each output parameter before they begin a

task, such that they can immediately apply knowledge after

their initial solution without an initial learning phase. This

strategy simulates a user with expertise in the myosin do-

main. Agents solved these tasks with different amounts of

maximum domain knowledge, and Fig. 6a shows the mean

best relative objective function found for each strategy for

both the expert and learning approaches when results are

aggregated across all Tables 2 and 5 tasks.

For both expert and learning strategies, having higher

domain knowledge improves design task performance, and

there is a negligible difference between expert and learning

approaches on final design quality (Fig. 6a). A second

perspective of the data was considered for the highest

performing cases of each strategy (where maximum do-

main knowledge is four) in Fig. 6b, by plotting the mean

best relative objective function after each evaluation during

the search process. Results show expert domain knowledge

provides a much faster convergence (Fig. 6b). The results

also demonstrate a growth after all knowledge has been

gained by the Univariate Learn and Apply strategy, when

knowledge is being applied to search the space much more

effectively than a random solver or its initial stochastic

learning period.

A larger set of strategies is explored in section ‘‘Sum-

mary of best agent strategies’’ in Appendix, where agents

were configured with many different preferences in their

search approaches, thus resulting in the assessment of over

a thousand strategic variations in searching these spaces.

Results from considering the large pool of agent searches

suggested that the Univariate Learn and Apply and Uni-

variate Expert Application strategies were superior to other

approaches. The best Univariate Learn and Apply strategy,

when aggregated across all tasks, had agents configured

with an initial starting guess of all design inputs set to their

median and no random evaluations. Including a random

evaluation after the initial evaluation only reduced the

overall score by *0.01, while improving the 2-outputs-1-

constraint problem in Table 2 by *0.04. The best Uni-

variate Expert Application had its most successful con-

figuration when its starting guess had all design inputs set

to median and no initial random evaluations. When three

random evaluations were included after the initial guess, it

only lowered the aggregated score across all tasks by

*0.02, yet increased the 2-outputs-1-constraint task by

*0.12.

Thus, for an unknown set of design tasks, the most ro-

bust approach may include random evaluations if there

were many problems similar to the 2-outputs-1-constraint

type task. If there were many 1-output-1-constraint type

tasks or 2-outputs-2-constraints type tasks, then the most

robust approach would have no initial random evaluations.

Table 5 Set of three additional NLP design tasks for testing robustness of agent strategies for additional, yet similar, design tasks found in

Table 2

Design tasks for robust and expert strategy assessment

Design goal Goal constraint Secondary constraint Valid designs (%) Task type

Highest system energy use B2.3 (ATP/ms) None *50 1-Output-1-constraint

Highest filament velocity None Avg # attached myos B5.8 (Natt) *50 2-Outputs-1-constraint

Lowest avg # of attached myos B5.4 (Natt) System energy B1.2 (ATP/ms) *25 2-Outputs-2-constraints
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These results demonstrate that through iterations with

agents, many successful cognitive-based search approaches

can be found for effectively solving these tasks, with many of

the strategies extending beyond what can be proposed prior

to user studies (such as including random evaluations after an

initial guess, which was not included in Table 1 as a potential

approach, but rather discovered as useful when investigated

with the agents). Our next step was to take a portion of these

highly successful strategies and provide them to users and

then determine whether user implementation of the agent-

derived strategy improved over users who approached the

tasks with no formalized strategy provided.

6 Final cognitive study: users aided by agent-derived

strategies

We conducted a final cognitive study, with a goal of deter-

mining whether users would benefit from using the most

effective strategies found by the agents. This cognitive study

consisted of a control problem, followed by users imple-

menting the Univariate Apply and Learn strategy and Uni-

variate Expert Application strategy. Depending on their

study condition, users searched the space with or without

early random evaluations. The GUI was modified to facilitate

user implementation of these strategies and our expectation

was that users would perform similar to the agents, and that

the strategy-supported user performance should exceed the

performance of users from the baseline cognitive study, who

were not provided a formalized strategy.

6.1 Experimental protocol

The participant population for the third cognitive study

consisted of 30 senior undergraduate and graduate students

in engineering and science-based disciplines enrolled in a

Cellular Biomechanics class at Carnegie Mellon

University. The performance of users in this final study was

compared back with the users from the baseline cognitive

study in order to evaluate the benefit of the agent-refined

strategies. Although this Cellular Biomechanics class had a

mix of students from different academic levels and disci-

plines in comparison with the baseline study (all senior

mechanical engineering students), the overall design per-

formance of subgroups was very similar, and the strongest

performing subgroup was the senior mechanical engineer-

ing students. Therefore, this new class serves as a good

conservative comparison group.

Participants were compensated with course credit and

randomly placed into one of two study conditions. Before

solving the design tasks, all users went through a self-

guided software tutorial. Each task was also limited to

4 min maximum search time, with users having to input

and evaluate ten designs within that limit. All participants

were able to complete all ten design evaluations within the

time limit. In both conditions, users solved the same three

tasks from the baseline cognitive study (Table 2) and then

the tasks from Table 5. For all tasks, the GUI forced users

to input their first evaluation as the median of all design

input values. An initial median guess for each participant

was chosen for the cognitive study to enforce consistency

among users, and because it was consistent with *65 % of

user searches beginning with a median guess during the

baseline cognitive study.

In the first condition, users implemented Direct varia-

tions of strategies: Direct users solved the same tasks as in

the baseline study (shown in Table 2) using the Univariate

Learn and Apply strategy, and then the additional tasks

explored in the final study (shown in Table 5) using the

Univariate Expert Application strategy. Given the lack of

task order effects in the pilot study, the sequencing of tasks

should not matter, but we conservatively placed the same

tasks from the baseline cognitive study first to make a

conservative comparison with that study’s results possible.

Fig. 6 Contrasts among Univariate Learn and Apply and Univariate

Expert Application approaches. The mean best relative objective

function found by a search (a) as a function of maximum knowable

domain knowledge and b as each evaluation is completed for a

comparison of the Univariate Expert Application and Univariate

Learn and Apply strategies when maximum domain knowledge is

four. Error for all mean agent searches is negligible. Both lines in part

(a) are nearly equivalent and the dark line in part (b) indicates result

from a random solver
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In the second condition, users implemented Broad var-

iations of the two strategies; Broad users also solved the

first three tasks using the Univariate Learn and Apply

strategy, and then Table 5 tasks using the Expert Appli-

cation strategy, but the GUI generated three random solu-

tions for their second, third, and fourth evaluations. (Note,

to reduce the chance of randomly generated solutions that

are univariate searches, each randomly generated solution

was required to have at least two input values different

from all previous inputs). Three random inputs following

the initial input for the Broad strategy were chosen as a

strategy because it was consistent with high-performing

strategies determined by the agents (section ‘‘Summary of

best agent strategies’’ in Appendix).

For Table 2 tasks, users solved the problems with the

generic variable names and sliders (as implemented in the

baseline cognitive study in Sect. 4). Therefore, any domain

knowledge differences among participants should be

negated as they were presented an interface that had

minimal contextual information. In contrast to these first

three tasks, where inputs/outputs were labeled generically,

users solved Table 5 tasks with myosin information and

graphics presented by the GUI as depicted in Fig. 2—all

graph axes were labeled with myosin input/output infor-

mation, the myosin/system renderings were presented to

users, and the results table had myosin labels. This addition

was included because users solved these three tasks using

the Expert Application strategy, which is based on users

being given relevant domain knowledge prior to the task

and applying that knowledge in a manner that is repre-

sentative of expertise in the domain. The assumption that

these users can operate very close to experts in the domain

is supported by recent GUI studies that demonstrated

novices with minimal instruction prior to GUI tasks can

perform similar to experts (Wolf et al. 2011).

Several modifications to the GUI presented in Fig. 2

were implemented to support this final cognitive study

(video available at http://www.youtube.com/watch?v=

3psPSKYl9WE). A table was added that summarized

known relationships a user uncovered during their search

process, or that summarized a priori parameter relation-

ships in the case of the Expert Application strategy. The

table summarized how increases in a known input affect

the goal output and secondary output (if a secondary output

was present in the task statement), which reduces the

cognitive load by having less demand on a user’s ability to

remember all relationships. For the Univariate Learning

and Application strategy tasks, the knowledge table ini-

tially stated that all input–output relationships are un-

known, but filled in the corresponding relationships once

the corresponding univariate searches were conducted for

design variable.

The GUI was also modified to facilitate user searches in

reference to their best design through adding highlights

under each slider to indicate a user’s previous best design.

The ticks under each slider were redrawn after each eval-

uation to inform the user of which potential designs are

valid for their next evaluation; only variable values that

were consistent with valid designs for the given strategy

had ticks drawn underneath them. The GUI did not allow a

user to input a design that violates the necessary strategy

and, if a user attempted to input such a design, the GUI

provides contextual information for why a user’s attempted

design does not meet the rules of the strategy. These fea-

tures of the GUI reduce the amount of cognitive load on the

user, thus enabling them to concentrate more on making

important design decisions instead of trying to remember

knowledge, their best design configuration, or the rules of

the strategy. These changes also reduce possible user in-

terface frustrations. These modifications also help control

the cognitive study by enforcing users to implement the

strategies required for a given task based on their study

condition.

6.2 Direct and broad strategies cognitive study results

Prior to separating groups into different conditions, a

control task was given to determine whether users in each

population had nearly equal proficiency in solving a task.

The control task was a 2-outputs-1-constraint task, with an

objective function of highest system energy use and a

secondary constraint of filament velocity not exceeding

3.3 lm/s. The results showed that one of the two popula-

tions of users outperformed the other slightly when com-

paring the best design found as an average for each group.

Therefore, the best users were removed from the analysis in

the high-performing group until it reached equal perfor-

mance to the least performing group. Equality occurred

once the three highest performing users were removed; all

subsequent results from this cognitive study are considered

with respect to having these users removed from the study

analysis.

Each population was then randomly assigned the Broad

or Direct strategy and trained to utilize their respective

search strategies in the context of the modified GUI via the

software tutorial. The users first solved Table 2 tasks and

the mean relative objective function of the best solution by

the end of each search was averaged for each population of

users. These are plotted for each task in Fig. 7a, in addition

to showing the performance of agents utilizing the same

strategies, a random solver as a basis of comparison, and

the user results from the baseline cognitive study (labeled

as ‘‘Human None’’ to reflect they were provided no formal

search strategy).
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Focusing first on the tasks shared with the baseline study

(Fig. 7a), the Human Broad strategic condition outper-

formed the prior user performance for all three problem

types. The Human Direct strategy outperformed the prior

user performance for two of the three tasks. The one ex-

ception was the 2-outputs-1-constraint problem with direct

search, and there the agent simulation had suggested it

would not be very effective. Thus, through considering all

pairwise comparisons of user performance with their re-

spective agent-refined strategy, there is clear evidence

pointing to the benefit of providing designers with strate-

gies refined by agents, particularly ones the agent simula-

tions suggest will be effective for the problem at hand.

When considering all six tasks (Fig. 7a, b), there was

generally a small difference between the relative success of

agent search and relative success of humans provided the

same strategy. Of the twelve possible pairwise comparisons

among humans and agents, when considering the mean

user score with standard error compared with the agents,

there were four tasks where differences were large. In three

of the tasks (Table 2: 1-output-1-constraint, Table 5:

2-outputs-1-constraint, and Table 5: 2-outputs-2-con-

straints), humans greatly outperformed agents in the broad

condition. The increase in performance from the broad

users over the agents was possibly because users were able

to assess sensitivities and effectively choose orderings of

when to change a given design variable, whereas agents

stochastically choose a design input and how far it changes.

In the 2-outputs-2-constraints task for the Univariate

Learn and Apply strategy, there was a large difference

between the users utilizing the direct strategy and their

respective agents, in which the users utilizing the direct

strategy underperformed (the only significant user under-

performance case). These differences were likely caused by

the ordering of input options in the GUI for that problem,

because users manipulated the detachment rate of myosins

*50 % of the time initially (rather than the 25 % occur-

rence via the unbiased agents). The increased likelihood of

users manipulating this input occurred because all input–

outputs were labeled generically (i.e., no contextual myosin

information), and the slider corresponding to detachment

rate was located in the upper left of the screen; generally,

when given no contextual information, users select options

top to bottom, left to right (Nielsen 2006; Shrestha and

Lenz 2007). The feasibility of this being a poor starting

location is supported when considering that agents with

different initial guesses was explored (such as beginning

searches with all input variables minimized or maximized)

and often performed worse compared with agents that

utilized random initial guesses or median guesses (section

‘‘Summary of best agent strategies’’ in Appendix).

Because there are differences in strategy performance

for each task and approach, the most robust strategy across

all task types was determined by averaging the mean

relative objective function for all six tasks in Fig. 7 for the

Human Broad strategy, Human Direct strategy, Agent

Broad strategy, and Agent Direct strategy independently.

Based on these averages, both the Human Direct and Hu-

man Broad strategies had an average score of *0.8, sug-

gesting both approaches are equally successful with

consideration to these six tasks. Agents, on the other hand,

performed better with the direct approach across tasks and

had a score of *0.8, while the Agent Broad strategy only

scored *0.74 when averaged across all tasks. This sug-

gests that human biases may provide an advantage in

searching tasks using a broad approach when compared to

agents, although comparisons must be made with caution

as there is uncertainty in the human measurements. The

broach approach may also be the best human strategy for

complex systems as it performs well across many different

Fig. 7 Mean best relative objective function of agents and users for

a Table 2 design tasks when using the Univariate Learn and Apply

strategy with Direct and Broad approaches and b Table 5 design tasks

when using the Expert Application strategy with Direct and Broad

approaches. All error bars represent standard error of the mean;

significant (p \ 0.05) and trending differences are indicated by

reported p-values on charts for comparisons of user collected data.

Horizontal lines indicate random solver results. Error for all mean

agent searches is negligible
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problem types and is robust to possibly very difficult and

counterintuitive tasks, such as the 2-outputs-1-constraint

task from Table 2.

7 Discussion

The utility of the design software and solution approaches

in complex system design are discussed, followed by an

examination of strategy and domain knowledge influence

on search quality for varied tasks, and finally how the

human-agent synergistic approach may extend to other

complex system domains and engineering decision-making

in general.

7.1 Utility of GUI for facilitating human-based design

The GUI was developed to remain extendible to complex

systems beyond the myosin application. In the simplest

case, as long as the system may be represented in NLP

form, it could be translated into the design interface by

changing the names of parameters that appear, the mathe-

matical equations calculated behind the scenes, and the

rendered graphics. In cases where there are more input and

output parameters than the amount considered in this study,

users could have selections of which inputs and outputs to

view at a given time, rather than having all inputs and

outputs appear on the screen simultaneously. The mod-

ularity and ease of implementing varied forms of the GUI

was demonstrated throughout this study through different

feedback conditions, representations with generic input–

output names, and contextual help for aiding users in im-

plementing the agent-refined strategies.

The GUI guided users in implementing strategies during

the final cognitive study, which could make it a useful

training tool for teaching humans effective search strate-

gies and for reducing the effects of human biases. One of

the aids from the GUI was its generation of random designs

for users during the broad strategy conditions, which re-

duced the amount of cognitive bias a user could introduce

into the broad search. The GUI also provides contextual

information to aid users in implementing their knowledge-

based univariate strategies. Similarly, it would be possible

to further support multivariate user searches through con-

textual hints provided by the GUI.

The GUI in this study was restricted in many ways be-

cause it had to present a controlled environment that fa-

cilitated cognitive studies and post-processing of human

results. However, future implementations could enable

users to view a greater amount of information and visual-

izations. Further, each of the NLP design tasks used in this

study represents a potential myosin technology, and this

tool could enable a designer to quickly formulate a set of

functional requirements and explore what potential myosin

system embodiments could fulfill those requirements. Fu-

ture work could explore other possibilities of extending the

GUI for more practical design use, especially extending to

higher-dimensional spaces.

7.2 Effectiveness of cognitive-based strategies

Of the considered cognitive-based search approaches

(Table 1), the highest performing searches utilized domain

knowledge either through learning or applying a priori

knowledge (that simulates an expert). Knowledge applica-

tion in this paper was always conducted according to greedy

search logic for fast convergence, while stochastic search

processes were utilized to facilitate broad early design space

exploration. In the 1-output-1-constraint tasks, which were

generally the easiest search spaces, any approach that leads

to convergence on the constraint performs well, because the

constraint is indicative of the global optimum for the prob-

lem (otherwise known as a bound problem). Therefore,

greedy univariate searches will always perform well on the

1-output-1-constraint tasks. Greedy searches also worked

well for the 2-outputs-2-constraints task for similar reasons,

in which convergence on a constraint was likely to result in a

high-quality design because a large portion of the design

space resulted in infeasible designs (only 25 % of designs

were valid), therefore leaving fewer local optima for the

greedy algorithm to find.

In the 2-outputs-1-constraint task from Table 2, greedy

searches were only effective if random evaluations were

introduced early in the search. Such early exploration may

have been necessary due to the nature of the 2-outputs-1-

constraint design space in comparison with the other tasks;

the 2-outputs-1-constraint task has a large feasible design

space (50 % of designs are valid) and a constraint on the

secondary output, which forms a design space that may

have many pareto optimal solutions along the constraint.

Therefore, fast convergence on an optimum leads to a

trade-off among the goal and secondary output such that

changing one design variable at a time will always result in

a worse solution, even though the global optimum is not

currently found. Therefore, the introduction of a broad

early search aids in finding good candidate solutions across

the entire design space before fast convergence on a local

optimum by the Univariate Learn and Apply Strategy (in

some cases, the local optimum may also be the global

optimum). The initial random search may not have helped

as much in the 2-outputs-1-constraint task from Table 5

because one of the design variables was monotonic (i.e., an

improvement in the objective function via detachment rate

also moved it away from all constraints; the only other task

with this feature was the 2-outputs-2-constraints task from

Table 2), meaning it would benefit less from the broad
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early search since the design task effectively only has three

design variables of interest.

7.3 Validation of synergistic human-agent approach

One of the greatest benefits of the human-agent approach is

the effectiveness it provides in improving human design

processes without extensive cognitive studies, which are

costly and time-consuming. Many users would have to be

recruited to test a variety of strategies, because there is a

limit on how many tasks one user can solve over the course

of a cognitive study, in addition to the limit on the number

of strategies they could utilize. Unlike agents, a user cannot

repeat the same task over and over, or under different

conditions, and remain unbiased. Such limitations are

highlighted with regards to the experimental design of the

final cognitive study. Here, users first solved three tasks

with the Univariate Learning strategy and the second three

with the Expert Application strategy, whereas agents could

solve all six tasks with all strategies (Sect. 5). However,

agent studies cannot run independently of cognitive studies

if the end goal is to provide human engineers better search

strategies, because the agents must find strategies that make

sense to humans that eventually carry out the strategy.

The synergistic human-agent approach is generalizable

to other domains beyond the myosin application. To

summarize succinctly, it requires characterization of hu-

man search behaviors, automation via rule-based agent

strategies that capture the cognitive basis of the human

approaches, and then refinement of those approaches via

rapid implementation with agents that returns a highly ef-

fective search approach to users. In this study, the agents

implemented over one thousand approaches to determine

which strategies are most effective and should be returned

to users. With these new strategies in hand, the users per-

formed much better than those with no provided strategy.

However, the best strategies found here may not be best

for other design tasks of other domains, or even these de-

sign tasks with a different number of evaluations allowed.

To elaborate, if a user was provided fewer than ten eval-

uations, the expert application approaches would be more

useful because of their fast convergence, whereas methods

with more random evaluations may be more useful as

problem complexity grows with more variables. Therefore,

it is our approach, not the specific strategy outcomes that

will be most generalizable to other domains and tasks. We

recommend deriving new strategies through human-agent

approaches through careful consideration of the complexity

unique to that domain’s design space and the availability of

gaining information concerning evaluated design perfor-

mance. However, the findings from this study could inform

which cognitive-based approaches to initially investigate in

other domains.

Future implementation of the approach could consider

methods of statistical data mining for finding trends in

large sets of human data and more flexibility in the vari-

ances that agents are allowed in implementing a strategy. It

is possible that other useful search strategies exist that

could further improve user searches, such as those corre-

lated with the amount of time a user has spent between

design inputs which are indicative of analytical reasoning

(long pauses between design evaluations) or heuristic rea-

soning (when a user quickly applies the same strategy re-

peatedly). The strategy produced by this study is

representative of a univariate search approach that is

known to be useful in human scientific reasoning (Kuhn

et al. 2008) and is reflective of the cognitive preferences

many users carried into their search approaches.

Univariate search behaviors, in addition to being fa-

miliar to users, may also be beneficial because they mini-

mize cognitive load (Hirschi and Frey 2002) by reducing

the number of variables and interactions a user has to re-

member and consider throughout their search. This notion

is supported by our findings in the pilot and baseline

cognitive studies that demonstrated users performed better

when they made small changes to their design. Small

changes to designs may not be the most effective strategy

for all domains; from the current results we can only

conclude that they are the most effective strategy found

with consideration to the examined myosin design space

for these particular tasks. Cognitive load associated with

both the strategy a user chooses, and the specifics of their

interface, could be further explored through experiments

that measure cognitive load associated with the problem-

solving process (Hart and Staveland 1988). More advanced

strategies to consider in future work might involve: (1) the

ways in which agents and users infer relative sensitivities

among variables, (2) the most effective learning periods

throughout a search endeavor and (3) interactions among

variables (how one variable affects the gain of another in

the design space).

8 Conclusion

This study has demonstrated the merit in developing

strategies for designing complex systems through a syn-

ergistic human-agent approach. The methodology is im-

plemented in the myosin domain to find highly effective

cognitive-based search strategies, but is also generalizable

to other domains and broadly to engineering decision-

making processes. Our approach first required proposing

possible cognitive-based search approaches, and then we

developed a myosin GUI environment for measuring and

assessing user search data in a pilot study. We then con-

ducted a cognitive study with many users searching design
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spaces and identified successful search trends based on the

proposed cognitive search approaches. These trends were

used to devise strategies that were rapidly implemented by

software agents. Agents then solved tasks with varied

strategic preferences until the most effective strategies

were found and returned to users. It was found that when

users implemented these agent-refined strategies, their

search performance improved in comparison to users that

had no imposed strategy.

This synergistic human-agent approach is particularly

important when considering that human designers often

have great difficulty in reasoning through the parameter

interactions of complex systems. In our approach, agent-

refined strategies were directly linked to how users

naturally searched the problem. For instance, users that had

the most success tended to make small changes to their best

design and change one design variable at a time through

univariate approaches. This finding, that users are suc-

cessful when using univariate approaches, is congruent

with univariate searches being a crucial pattern of reason-

ing in learning and applying knowledge in science-based

tasks. The best strategies used by the agents, and returned

to the humans, required consistent use of univariate

searches to methodologically learn and apply knowledge

via greedy search tactics. In some cases, a few random

design evaluations early in the search process improved the

likelihood of the greedy search converging on higher-

quality designs. Most importantly, these univariate search

tactics are robust for effectively solving many types of

design tasks and facilitate both novice and domain expert

approaches to search spaces.

The process of utilizing cognitive studies to isolate

trends for strategies that are refined with software agents is

generalizable to many other domains and is particularly

useful as the agents can automate many different search

strategies in comparison with time-consuming cognitive

studies. Such a generalizable methodology is important,

because it enables the discovery of effective strategies that

are well suited for a particular application, which may in-

clude strategies that perform poorly in the myosin domain

but are highly effective in other domains. In sum, our

synergistic cognitive agent-based methodology resulted in

highly effective search strategies for users, and future ap-

plications of the approach could aid in furthering engi-

neers’ capacities to design high-performance technologies

of ever-increasing complexity.
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Appendix

The appendix contains information for (‘‘Myosin mathe-

matical modeling’’) myosin mathematical modeling,

(‘‘Design task generation and difficulty’’) how design tasks

are created and balanced, (‘‘Pilot cognitive study with real-

time and delayed feedback’’) pilot cognitive study results,

(‘‘Summary of best agent strategies’’) assessment of agents

and all of their considered preferences, and (‘‘Supplemental

media’’) supplementary media.

Myosin mathematical modeling

A full account of myosin design is beyond this paper’s

scope, so only equations necessary for extending past

myosin models for GUI implementation are presented.

These equations borrow heavily from a previous well-

established mathematical model (Howard 2001). Myosins

operate through converting ATP molecules into me-

chanical energy and then stochastically attach and apply a

force to an actin filament. Myosins have three structural

states: attached and generating positive force, attached and

generating negative force, or detached and generating no

force. A myosin’s performance is tunable via engineering

its molecular configuration for altered mechanics (Anson

et al. 1996) and chemistry (Murphy and Spudich 1998). For

the GUI, three myosin design parameters are considered:

(1) a myosin’s lever arm length l, (2) a myosin’s attach-

ment rate kon, and (3) a myosin’s detachment rate koff.

Additionally, the number of myosins Nmyo interacting with

the filament is also considered as a system input parameter

(Fig. 8).

Myosins are assumed to behave as linearly elastic ele-

ments once attached, utilize the energy of one ATP per

cycle eatp, have an attachment rate dependent on the actin

filament velocity v, and detach based on a time constant

koff
-1 during their negatively strained state. Myosins are as-

sumed to utilize the same energy per cycle eatp (62.5 zJ)

Fig. 8 Rendering of myosins

interacting in a virtual

environment (video available at

http://youtu.be/kLX-0Zdizk8)
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with the same efficiency regardless of their configuration.

When exerting positive force, myosin lever arms of length

l rotate h (30�) relative to their head a linear distance

d? = l � sin(h). The stiffness j of a myosin is therefore

constrained to j = eatp/d?
2 . The force generation of a

myosin is dependent on its proportion of time attached to a

filament r, which is found by dividing the distance a

myosin remains attached to a filament don ¼ dþ þ v
koff

by

the total distance the filament travels relative to a myosin

during each myosin cycle Dc, provided by

Dc ¼
xd

1� exp �kon�xz

v

� � : ð1Þ

xd (36 nm) represents the spacing of myosin binding sites

on actin, and xz (1 nm) represents how close a myosin must

be to a binding site to attach. The myosin duty ratio is

r ¼ don=Dc. The time-average force fmyo vð Þ
� �

of an indi-

vidual myosin is found through considering its time-aver-

age strain xe vð Þh i while attached, given by

xeðvÞh i ¼
d2
þ � 2 � ðd� vð ÞÞ2

2 � donðvÞ
; ð2Þ

and multiplied by a myosin’s stiffness and duty ratio, ex-

pressed as

fmyoðvÞ
� �

¼ j � r � xeðvÞ: ð3Þ

The force of a system of myosins is Fsys ¼ Nmyo � fmyo

� �
,

where Nmyo represents the number of cycling myosins

within reach of a single filament. It is not possible to solve

for velocity as a function of force; therefore, a system re-

sponse is calculated for display in the GUI by iteratively

solving Eq. (3) with force as the independent variable. We

assume a system force of 10 pN for all design tasks in the

GUI. The average number of myosins attached to actin,

Natt = Nmyo � r, is a stability metric of the system. It is

suggested that at least two or more myosins must remain

attached on average in order to maintain constant direc-

tionality of the actin filament and avoid system dissociation

(Uyeda et al. 1990). The amount of ATP a system utilizes,

Esys, is determined by first calculating the average ATP

used over time by each myosin, given by emyo ¼ v=Dc, and

then multiplying it by the total number of myosins, to find

Esys = Nmyo � emyo. It is not necessary to calculate the

precise area of the system for the purposes of this study,

and a relative system size metric, Asys, is found as a pro-

portion between the number of myosins and myosin lever

arm length A = Nmyo/l when calculated for GUI output.

Design task generation and difficulty

Six NLP formulations were developed to represent myosin

design tasks for the pilot cognitive study (Sects. 3.3 and

‘‘Pilot cognitive study with real-time and delayed feed-

back’’) and are separated into three categories depending

on the number of output parameters and constraints con-

sidered (Table 6). Each task had a design goal with respect

to one output parameter as an objective function and then

constraints either on the goal output or a secondary output.

Possible objective functions and secondary outputs were

the velocity of the actin filament propelled by myosins v,

the rate of ATP consumption of all myosins in a system

Esys (i.e., energy usage), the average number of myosins

attached to the filament Natt (a metric indicative of sta-

bility), and the system size Asys. A user is expected to

search the design space for a configuration that best fulfills

a design goal without violating any constraints. Designs are

all scored qualitatively on a scale of one to zero relative to

the global objective function. If any constraint was violated

the design was considered infeasible and given a score of

zero. Each constraint added to the task effectively cuts the

feasible design space by 50 %, which was implemented to

maintain consistency in design task difficulty. For two

constraint tasks, the secondary constraint is the only active

constraint limiting global optimality. A variety of different

combinations of goal and constraint outputs were chosen in

order to reduce user learning and familiarity with the tasks.

To ensure that the design spaces represented problems

of roughly the same difficulty for each pairing of design

tasks, all 625 designs for a task were evaluated and graded

relative to the global optimum solution for the task under

consideration. Figure 9a displays the distribution of design

Table 6 Six NLP design tasks with varied numbers of outputs and constraints for users to solve during the pilot cognitive study

Design tasks for real-time/delayed feedback cognitive study

Design goal Goal constraint Secondary constraint Valid designs (%) Task type

Highest system energy use B2.3 (ATP/ms) None *50 1-Output-1-constraint

Lowest avg # of attached myos C5.7 (Natt) None *50 1-Output-1-constraint

Highest filament velocity None System energy use B2.3 (ATP/ms) *50 2-Outputs-1-constraint

Lowest system energy use None Avg # of attached myos C5.0 (Natt) *50 2-Outputs-1-constraint

Lowest filament velocity B5.0 (lm/s) System size C4.0 (nm-1) *25 2-Outputs-2-constraints

Highest avg # of attached myos C5.4 (Natt) Filament velocity B3.2 (lm/s) *25 2-Outputs-2-constraints
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performance for tasks found in Table 6, where the total

number of designs that have a given relative objective

function value or higher is reported for each relative ob-

jective function value. As expected, more highly con-

strained designs have fewer feasible designs, and less

designs near the optimal solution. More critically, the pairs

of problems were very close in difficulty, if difficulty is

assumed to correspond with the proportion of good designs

near the optimal solution. A second assessment of problem

task difficulty was conducted by comparing the results of a

random solver for each task in Fig. 9b, which further

supported that tasks with similar numbers of outputs and

constraints result in comparable design spaces. When the

random solver was used to solve each task, it evaluated

each task with random inputs until its average performance

could be found with negligible error after solving the tasks

thousands of times.

Pilot cognitive study with real-time and delayed

feedback

The pilot user study consisted of four participant groupings

that each received a unique sequence of tasks to form a

within-subject experiment that investigates the effects of

feedback and task complexity on solution quality. In all

tasks, users evaluated ten designs. In the real-time feedback

condition, output information via the GUI was provided

immediately to the user. With delayed feedback, users did

not receive evaluated design performance information from

the GUI until after their eighth evaluation. There were four

groupings of users developed to form a within-subject ex-

periment that minimized effects of learning across condi-

tions and measured the effects of real-time versus delayed

feedback for each task configuration. The first two group-

ings began with the first task in Table 6 and alternated tasks

between the real-time and delayed feedback condition, with

differing initial feedback conditions (i.e., the first group did

tasks in Table 6 from top to bottom, beginning with real-

time feedback, the second group also did Table 6 tasks from

top to bottom, but began with delayed feedback. The

feedback type was switched for every problem sequentially

for both groups). The third and fourth groupings reversed

the ordering of tasks from these first two groups (i.e., doing

Table 6 tasks from bottom to top). For each task, a user was

allowed ten evaluations and a maximum time of 3.5 min.

Sixteen mechanical engineering students (4th and 5th year

seniors, and graduate students) were recruited from Car-

negie Mellon University and randomly and evenly assigned

to the four study conditions.

All designs were graded relative to the global optimum

for a given problem, by dividing the objective function

found for that design by the global optimum to provide it a

score between zero and one (the reciprocal was used for

minimization tasks). For each task pair of a given diffi-

culty, data was averaged and standard error was found for

all real-time and delayed searches separately. A random

solver was also used to solve each task, which acted as a

control and repeatedly solved the tasks with random inputs

until its average performance could be found with negli-

gible error. Since real-time and delayed searches were

varied between tasks for a user, each participant was rep-

resented once in both the real-time and delayed aggrega-

tions for a pair of tasks and the user was his/her own

control for individual variability in human problem-solving

performance. Results for each task and condition are

plotted in Fig. 10a, with a user’s best design being com-

pared with the global optimum and given a relative score

that is averaged with all other users in that same condition.

In Fig. 10b, the same dependent measure is found, but

users are separated according to whether they received the

1-output-1-constraint task initially or the 2-outputs-2-con-

straints task, rather than with respect to the study condition.

Users that received immediate feedback found designs

with higher relative objective functions than those with

Fig. 9 a The number of designs within each scoring percentile relative to the global optimum and b mean best relative objective function when

each task is solved with a random solver as a function of how many evaluations had been completed during a particular search
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Fig. 10 Mean best relative objective function found by users under

a real-time and delayed feedback conditions for each task type and

b for both conditions aggregated based on the users’ initial task type.

All error bars represent standard error of the mean; significant

(p \ 0.05) and trending differences are indicated by reported p-values

on charts. Horizontal lines indicate random solver results

Table 7 Table detailing agent performance for each Tables 2 and 5 task, and the average of all tasks

Mean of all

tasks

Baseline tasks (Table 2) Additional tasks (Table 5) Agent configuration

1-Out.-1-

con.

2-Out.-1-

con.

2-Out.-2-

con.

1-Out.-1-

con.

2-Out.-1-

con.

2-Out.-2-

con.

Initial

guess

No. of

random

Max dist

from best

Rule-based agent

strategy

0.84 0.95 0.54 0.91 0.91 0.82 0.93 Mid 0 4 Uni. Expert App.

0.84 0.94 0.62 0.90 0.89 0.80 0.91 Mid 1 4 Uni. Expert App.

0.82 0.93 0.66 0.86 0.87 0.78 0.86 Mid 3 4 Uni. Expert App.

0.79 0.94 0.49 0.82 0.91 0.74 0.85 Mid 0 3 Uni. Learn/Apply

0.78 0.93 0.53 0.80 0.88 0.73 0.82 Mid 1 3 Uni. Learn/Apply

0.77 0.92 0.63 0.68 0.86 0.73 0.81 Random 0 3 Uni. Learn/Apply

0.69 0.90 0.46 0.64 0.87 0.61 0.64 Mid 0 2 Uni. From Best

0.68 0.90 0.48 0.61 0.86 0.61 0.63 Mid 1 2 Uni. From Best

0.68 0.89 0.51 0.60 0.86 0.61 0.62 Mid 3 2 Uni. From Best

0.68 0.89 0.53 0.60 0.86 0.61 0.58 Mid 0 2 Stoch. From Best

0.67 0.86 0.57 0.58 0.82 0.60 0.57 Mid 0 3 Stoch. From Best

0.67 0.86 0.57 0.58 0.82 0.60 0.57 Mid 0 5 Stoch. From Best

0.67 0.84 0.63 0.53 0.82 0.61 0.55 Random – – Rand. Solver

Results are sorted in descending order based on the value in the mean of all tasks column. Each row represents a different agent configuration

Fig. 11 Effects of feedback on user search behavior aggregated after

each completed evaluation for a choosing design inputs near their

previous best design and b how often they reach global improvement.

All error bars represent standard error of the mean. Dark lines

indicate random solver results
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delayed output, which suggests that the output provided by

the tool to users is helpful (Fig. 10a). The results also

showed that condition differences were greatest on the

most difficult task, and that users in the real-time condition

were close to finding the global optimum on the first task as

a group, which is indicative of reaching a ceiling of per-

formance for the task. Figure 10b demonstrates that there

was not significant learning across tasks. Therefore, future

cognitive studies that are designed in a similar manner of

varying tasks greatly among one another should also have

minimal amounts of learning among users.

We further investigate whether real-time feedback aided

users by investigating how search behavior and perfor-

mance were affected during each point in the evaluation

process. The mean distance of a user’s design input com-

pared with all past inputs was determined using the same

method as described for the baseline study in Sect. 4.2 and

results were aggregated according to user condition and

tasks for each evaluated design during a search (Fig. 11a).

Search performance was tracked throughout the solution

process by counting how many times a user had globally

improved their relative objective function at each point in

the design process and is plotted in Fig. 11b for each

condition.

Users in the delayed feedback condition made larger

changes to their designs (Fig. 11a) over the course of their

search than those in the real-time feedback condition,

which is correlated with users in the delayed feedback

condition also being less likely to improve their global best

solution with each new evaluation (Fig. 11b). These find-

ings suggest that users benefitted from real-time feedback

by utilizing information to make smaller, more useful

changes to their designs. However, users in the real-time

condition still did not improve their design as often as a

random solver (Fig. 11b), which suggests there is room for

improving user search approaches.

Summary of best agent strategies

Agents with different preferences were used to solve tasks in

over a thousand possible configurations by implementing

one of four rule-based strategic approaches that include

Univariate Expert Application, Univariate Learn and Apply,

Univariate From Best, and Stochastic From Best as de-

scribed in Sect. 5. Agent preference parameters included (1)

an agent’s initial design input preference (random, median

of all inputs, all inputs set to their lowest, all inputs set to

their highest), (2) how many random design evaluations

follow their initial evaluation (0–8), and (3) how much

maximum knowledge was obtainable/known a priori (only

varied for knowledge-based strategies from zero to four).

Each agent solved each task 2500 times, and then the

mean best relative objective function was found for each

task, and all six tasks (Tables 2, 5) were aggregated for

each agent. A partial summary of the best agent con-

figuration is present in Table 7, where the best configura-

tions were based on those with the highest mean best

relative objective function value when averaged across all

tasks. To add diversity to the table and show representation

from each strategy, the global optimum agent configuration

and then the two agent configurations that had an odd

number of random evaluations and equivalent max distance

from best parameters (with the exception of the Stochastic

from best strategy since that was its only parameter that

varied) are presented in Table 7. This small subset of so-

lutions shows that increasing the number of random eval-

uations up to three in most cases does not greatly impede

the robustness of a strategy, yet typically increases the

design score of the 2-outputs-1-constraint task from

Table 2. The table demonstrates tiers of strategy, with the

best Univariate Expert Application strategies being uni-

versally better than the Univariate Learn/Apply strategies

that tend to be universally better than Univariate From Best

strategies.

Supplemental media

1. Myosin Description and Animation (http://youtu.be/

kLX-0Zdizk8).

2. Software Tutorial and Practice Task (http://youtu.be/

XOi3n-XwAXQ).

3. Myosin Table 2 Design Tasks with Generic Input–

Output Names (http://youtu.be/-N–Jopb4DA).

4. Cognitive Study 3 Control Task, Strategy Tutorial, and

Learning/Apply Task (http://www.youtube.com/watch?

v=3psPSKYl9WE).
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